APPENDIX N: EMI

Mr. Dan MacEachern Fire Chief Auld's Cove Fire Hall NS-104 Aulds Cove, NS B0H 1K0 Email: auldscovefire3053@gmail.com

Dear Mr. MacEachern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

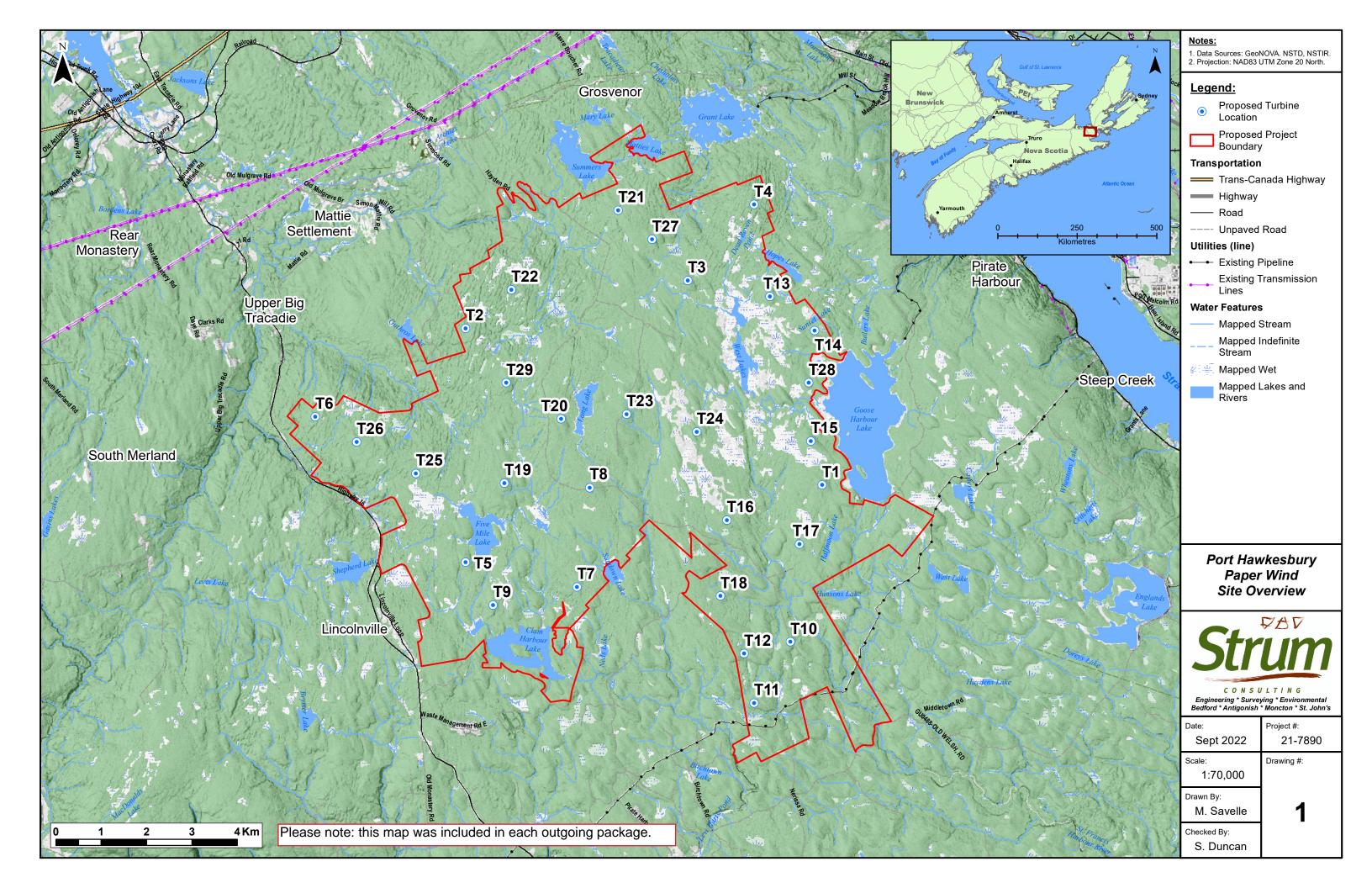
- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890


Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Mr. Brad Wells, CET Senior Manager, NS Zone Leader Access Engineering Bell Aliant Email: Brad.Wells@bellaliant.ca

Dear Mr. Wells,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Mr. Joel Butler Bell (BCE Corporate Headquarters) 1 Carrefour Alexander-Graham-Bell Building A, 4th Floor Verdun, QC H3E 3B3 Email: Joel.Butler@bellaliant.ca

Dear Mr. Butler,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Subject: RE: [EXT]Port Hawkesbury Paper Wind Farm Project

Saini, Sunny <sunny.saini@bell.ca> to Butler, Joel ▼ Wed, Sep 28, 6:04 PM

You are viewing an attached message. Strum Consulting Mail can't verify the authenticity of attached messages.

()

Hello Joel,

Team reviewed various parameters regarding Electromagnetic Interference Study. As per internal discussions, this will not affect the function of our communications equipment. No issues from our end.

Hope this is helpful!

Thank you!

Best Regards,

Sunny Saini Project Manager M: (587) 229-9812 RAN Support and Solution

Canadian Coast Guard Vessel Traffic Systems Radars Email: windfarm.coordinator@dfo-mpo.gc.ca

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Courtney Morrison <cmorrison@strum.com>

RE: Port Hawkesbury Paper Wind Farm Project

Grégoire, Martin <Martin.Gregoire@dfo-mpo.gc.ca> Mon, Oct 3, 2022 at 4:22 PM To: Courtney Morrison <cmorrison@strum.com>, General Mailbox <general@strum.com>, Scott Dickey <sdickey@strum.com>, Matthew Savelle <msavelle@strum.com>

Thanks for the files, they work fine with Google Earth.

The proposed wind farm (Port Hawkesbury Paper) is located 14 km away from the Eddy Point radar site. Even though it is located within the 60 km consultation zone, it is located beyond the area covered by the radar. Therefore no interference issues are anticipated.

Regards / Salutations,

Martin Grégoire

Canadian Coast Guard

Garde côtière canadienne

From: Courtney Morrison <cmorrison@strum.com> Sent: Monday, 3 October, 2022 2:08 PM To: Grégoire, Martin <Martin.Gregoire@dfo-mpo.gc.ca> Cc: General Mailbox <general@strum.com>; Scott Dickey <sdickey@strum.com>; Matthew Savelle <msavelle@strum.com> Subject: Re: Port Hawkesbury Paper Wind Farm Project

Hi Martin,

Thanks for your email. I've attached a zip folder of the shapefiles for this project, which should work for Google Earth. I've cc'd our Geomatics Manager, Matt Savelle, in case you have any issues.

Best,

Courtney Morrison, MREM (she/her)

Community Engagement Coordinator

Note: Out of Office Oct 8 - 16

Department of National Defence (DND) Military Air Defence and Air Traffic Control Radars Wind Turbines D Aero Rdns 1 Canadian Air Division PO Box 17000 Station Forces Winnipeg MB R3J 3Y5 Email: +WindTurbines@forces.gc.ca

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering . Surveying . Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Turbine information								
Turbine Number	LAT dd mm ss.ss	LONG -ddd mm ss.ss	Ground Elevation (meters)	Nacelle Height (meters)	Rotor Diameter (meters)	Total Height (meters)		
Example 1	60 39 16.59	-110 36 14.01	126.00	100.00	96	274		
1	45 32 14.456	-61 25 37.703	152	120	150	347		
2	45 34 11.101	-61 31 36.663	157	120	150	352		
3	45 34 42.075	-61 27 50.028	172	120	150	367		
4	45 35 35.422	-61 26 41.37	177	120	150	372		
5	45 31 23.953	-61 31 41.028	165.6	120	150	361		
6	45 33 9.845	-61 34 11.16	132	120	150	327		
7	45 31 5.152	-61 29 48.588	163	120	150	358		
8	45 32 15.761	-61 29 33.888	168	120	150	363		
9	45 30 53.275	-61 31 14.128	157.1	120	150	353		
10	45 30 22.986	-61 26 13.114	133	120	150	328		
11	45 29 39.857	-61 26 51.26	138	120	150	333		
12	45 30 15.203	-61 27 0.288	143	120	150	338		
13	45 34 29.512	-61 26 27.041	160	120	150	355		
14	45 34 13.568	-61 25 42.084	163	120	150	358		
15	45 32 45.938	-61 25 48.4	151	120	150	346		
16	45 31 50.739	-61 27 15.23	159	120	150	354		
17	45 31 32.599	-61 26 1.966	142	120	150	337		
18	45 30 56.602	-61 27 23.211	156	120	150	351		
19	45 32 20.005	-61 31 0.418	173.9	120	150	369		
20	45 33 4.991	-61 30 1.583	183	120	150	378		
21	45 35 33.229	-61 28 59.48	160	120	150	355		
22	45 34 37.936	-61 30 49.496	159	120	150	354		
23	45 33 7.741	-61 28 55.048	173	120	150	368		
24	45 32 54.09	-61 27 44.07	176	120	150	371		
25	45 32 28.159	-61 32 30.077	160.5	120	150	356		
26	45 32 51.368	-61 33 29.43	159.8	120	150	355		
27	45 35 11.847	-61 28 25.767	172	120	150	367		
28	45 33 27.56	-61 25 49.501	150	120	150	345		
29	45 33 31.631	-61 30 56.411	162	120	150	357		

Wind Turbine Submission Form

General Mailbox <general@strum.com>

NAVCAN File #22-4067

1 message

+WindTurbines@forces.gc.ca <+WindTurbines@forces.gc.ca> To: general@strum.com Tue, Nov 22, 2022 at 2:32 PM

Good day,

We have completed the detailed analysis of your proposed site, referenced in NAVCAN Land Use file# 22-4067 Port Hawkesbury Paper Wind Farm Project near Mulgrave NS. The results of the detailed analysis and subsequent technical and operational impact assessments have confirmed there is likely to be minimal or no interference with DND radar, flight operations, and radio-communication systems.

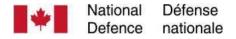
Therefore, as a result of these findings we have no objections with your project as submitted. Please find the attached Letter of Non-Objection for your records.

Thank you again for your patience during this process.

MWO / Adjum Jeff Bateman, CD

Staff Officer Aerospace Systems 3, 1 Canadian Air Division/Canadian NORAD Region Headquarters

Canadian Armed Forces


jeffrey.bateman2@forces.gc.ca / Tel.: 204-833-2500 ext 2257 / CSN: 257-2257

Officier d'État Major Systèmes Aérospatiales 3, 1re Division Aéreienne du Canada/Région Canadienne du NORAD

Forces armées canadiennes

jeffrey.bateman2@forces.gc.ca / Tel.: 204-833-2500 ext 2257 / CSN: 257-2257

•	CANR Letter	NON Objection	22-4067 Port	Hawkesbury.pdf
\sim	36K	-		

1 Canadian Air Division HQ PO BOX 17000 STN Forces Winnipeg, MB R3J 3Y5

Date of Electronic Signature

Shawn Duncan President Strum Consulting 1355 Bedford Highway, Bedford, Nova Scotia B4A 1C5

LETTER OF NON-OBJECTION FOR STRUM CONSULTING

Dear Mr. Duncan

Thank you for your patience on this matter and for considering DND radar, airport facilities, and radio-communication systems in your project development process. We have completed the detailed analysis of your proposed site, referenced in NAVCAN Land Use file# 22-4067 Port Hawkesbury Paper Wind Farm Project near Mulgrave, NS. The results of the detailed analysis and subsequent technical and operational impact assessments have confirmed there is likely to be minimal or no interference with DND radar, flight operations, and radio-communication systems. Therefore, as a result of these findings we have no objections with your project as submitted. If however, the layout were to change/move, please resubmit that proposal for another assessment.

The concurrence for this site is valid for 24 months from date of this correspondence. If the project should be cancelled or delayed during this timeframe please advise the point of contact. It should be noted that each submission is assessed on a case by case basis and as such, concurrence on this submission in no way constitutes a concurrence for similar projects in the same area, nor does it indicate that similar concurrence might be offered in another region. The issuance of this Letter of Non-Objection shall not constitute a waiver or alienation of any existing or future legal rights of the DND/CAF nor shall it be construed to create any exemptions, indemnification, approvals, rights, acceptances in favour of Strum Consulting.

DND/CAF expressly reserves its rights to take legal action or seek remedy for any and all liability, loss, harm, degradation of services or equipment, litigation costs, damages, judgements or expenses that arise from the adverse effects, whether incidental, indirect or causal, of the referenced NAVCAN Land Use file# 22-4067 Port Hawkesbury Paper Wind Farm Project near Mulgrave, NS. upon the DND/CAF radars, equipment and its provision of Air Traffic Services.

Canada

At present DND is working with Transport Canada to make obstruction lighting compliance with Night Vision Goggles (NVG) mandatory. At present DND cannot stipulate that proponents of wind turbine farms utilize NVG compliant lighting. However, as you can imagine, the safety of our aircrews is a top priority, and as such, we ask that you consider lighting your turbines with NVG compliant lighting so that they are visible to pilots during NVG operations.

I trust that you will find this satisfactory. If you have any technical questions or concerns regarding any aspect of this investigation, please contact the undersigned.

Kind regards.

A.A. Lockerby Lieutenant-Colonel Senior Staff Officer Aerospace Capabilities and Readiness

Mr. Andrew MacVicar Eastlink Inc. P.O. Box 8660, Station "A"

Halifax, NS B3K 5M3 Email: CEO@corp.eastlink.ca

Dear Mr. MacVicar,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Environment Canada Weather Radars Email: weatherradars@ec.gc.ca

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Table 1: Proposed Turbine	Locations & Specifications
---------------------------	----------------------------

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Meteorological Service Service of météorologique Canada du Canada

Oct. 7th, 2022

Courtney Morrison Strum Consulting

Subject: Port Hawkesbury Paper Wind Farm Project – Updated Preliminary Analysis of Impacts on ECCC Radars (Marion Bridge Radar) – no *objections to the current proposal.*

Dear Ms. Morrison,

Thank you for contacting the Meteorological Service of Canada, a branch of Environment and Climate Change Canada (ECCC), regarding your wind energy intentions.

When assessing the potential impact of all new wind farm projects, ECCC's main goal is to avoid significant interference that would hinder the timely and accurate production of watches and warnings of significant weather.

We have reviewed the information you have provided to us via email on Sept. 26, 2022, for the proposed Port Hawkesbury Paper Wind Farm Project (located 104 km away from ECCC's Marion Bridge Radar - Marion Bridge, NS). Our preliminary assessment of the proposed project indicates that any potential interference that may be created, should not be severe for our radar operations. Consequently, we do not have objections to the current proposal.

If your plans are modified in any manner (e.g. number of turbines, height, placement or materials) this analysis would no longer be valid and an updated analysis must be conducted. Please contact us at: radarsmeteo-weatherradars@ec.gc.ca

Thank you for your ongoing cooperation and we wish you success with your wind energy project.

Sincerely,

Robert Daigle Directeur, Surveillance atmosphérique et services de données Service Météorologique du Canada, Environnement et Changement Climatique Canada Director, Atmospheric Monitoring and Data Services Meteorological Service of Canada, Environment and Climate Change Canada

Guysborough Police 55 Queen Street Guysborough, NS B0H 1N0

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Industry Canada Email: ic.spectrumnsd-spectredne.ic@canada.ca

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Table 1: Proposed Turbine Locations & Specifications
--

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences <u>sdickey@strum.com</u>

General Mailbox <general@strum.com>

RE: Port Hawkesbury Paper Wind Farm Project

1 message

DuChene, Bethany (ISED/ISDE)

bethany.duchene@ised-isde.gc.ca>

To: "general@strum.com" <general@strum.com>

Tue, Oct 25, 2022 at 3:52 PM

Good afternoon,

I have reviewed the details of this proposal. My comments are as follows:

- The proposed turbines are within 15km of an analog TV station in Port Hawkesbury, and are located within the station's secondary service contour. As per section 3.2 of the RABC/CanWEA guidelines document, it is recommended that a reception analysis is performed as new turbines may affect reception in the area.
- Please ensure all agencies listed in Table 1 are consulted with several are operating in the area of the proposed wind farm.

Regards,

Bethany DuChene

Spectrum Management Officer, STS-Atlantic and Ontario Regions Innovation, Science and Economic Development Canada / Government of Canada bethany.duchene@ised-isde.gc.ca / Tel: 902-499-9258 / TTY: 1-866-694-8389

Agente de gestion du spectre, SST-Regions de l'Atlantique et de l'Ontario Innovation, Sciences et Développement économique Canada / Gouvernement du Canada bethany.duchene@ised-isde.gc.ca / Tél. : 902-499-9258 / ATS : 1-866-694-8389

From: General Mailbox <general@strum.com> Sent: September 26, 2022 9:48 AM To: ic.spectrumnsd-spectredne.ic@canada.ca Cc: Scott Dickey <sdickey@strum.com> Subject: Port Hawkesbury Paper Wind Farm Project

Good morning,

Please find attached a notification letter for the proposed Port Hawkesbury Paper Wind Farm development located near the community of Lincolnville within Guysborough County, Nova Scotia. A confirmation of receipt would be greatly appreciated. For questions or comments, kindly contact the undersigned.

Courtney Morrison (she/her)

Community Engagement Coordinator

Engineering • Surveying • Environmental

Bedford • Antigonish • Moncton • St. John's

Email: general@strum.com

Tel: 902.835.5560 (24/7) Fax: 902.835.5574

Cell: 902.293.4914 (call/text)

www.strum.com

CONFIDENTIALITY NOTICE

This e-mail, and any files sent with it, is confidential, and is for the use of the intended recipient only. If you have received this e-mail in error, please telephone 902.835.5560 or e-mail the sender, and delete the original. Thank you

Mulgrave Volunteer Fire Department 385 Murray Street Mulgrave, NS B0E 2G0

To whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences <u>sdickey@strum.com</u>

NAV CANADA file N°./ Ref N°	Tra	ansport Canada Fil	le N° / Ref N	۷°						
GENERAL INFORMATION										
Company/Owner Name:	Port Hawkesb	ury Paper Wind	d	Contact Person: Mark Savory						
Address: 120 Pulp Mill R	d			City: Port Hawkesbu	ury	Prov: NS	Postal Cod	e: B9A 1A1		
Tel: 902 237 7321	Cell:	Er	mail: marl	l: mark.savory@porthawkesburypaper.com						
Applicant: Strum Consult	Applicant: Strum Consulting					Dickey	1			
Address: Railside, 1355		City: Bedf	ord	Prov: NS	Postal Code	e: B4A 1C5				
Tel: 902-835-5560 Cell: Ema				key@strum	.com	1	•			
DETAILS OF PROPOSAL		· ·								
 For geographic coordinates, provide <u>up to</u> four (4) decimal places of a second. For ground elevation and tower height, provide <u>up to</u> four (4) decimal places. Additional document(s) to be submitted: Map: either 1:50,000 Topographical map (<u>http://atlas.gc.ca/site/english/toporama/index.html</u>) or a Google Earth map/kmz location of the proposed structure needs to be clearly marked; paper or digital surveys are always welcomed. Project Identification: Port Hawkesbury Wind Project Nearest Town: Lincolnville Province: NS 										
Geographic Coordinates submissions containing please complete the <u>Mu</u> (Examples: Linear Strue	g more than o <u>ultiple Obstac</u>	one set of coor <u>le Template</u> a	rdinates, nd return	n in Excel fo	ormat.	Degrees ong. W -61 /	Minutes 28 / 55.04	Seconds 8 For		
Type of Structure: Wind	Farm		Nev	w Structure?	? 🛛 Yes	No				
Structure alone	A	ith an addition	A . (Ground Elev	ation (Abov	e Sea Level)	132 - 183	ft ⊠m		
T	Î ₿		в. 9	Structure He	eight Additio	n	120	∏ft ⊠m		
C	с				otal Height (A all appurte	Above Ground nances	195	ft ⊠m		
_ ↓	▲ —		Tota	Total Height (Above Sea Level) (A + C) 327-378						
Cranes to be used? If Yes: Crane details sh using the Land Use Pro Crane(s).	hall be submit		y App	proximate D	uration of C	onstruction: 12	Months			
Proposed Construction	n Start Date: 1	5-Jan-23	If Te	If Temporary Structure, indicate Removal Date: 15-Jan-48						

Comments: See attached letter and drawing for additional details. Once transmission line and crane data known, details will be submitted separately. 1:70,000 scale drawing provided to detail Project boundary.
Known co-location with/on NAV CANADA Site: Yes No A Third-Party Submission Form may be required for complex applications, fee applicable.

Applicant/Representative Signature	Print Name	Date
lit ly	Scott Dickey	11-Oct-22
Acknowledgement of reading Detailed Land	<u>Use Proposal Guidelines</u> (Submitte	r's Initials) SD

For a detailed description on NAV CANADA's requirements and additional information, refer to the NAV CANADA website at <u>www.navcanada.ca</u> > Aeronautical Information > <u>Land Use Program</u>.

NAV CANADA's land use evaluation is based on information known as of the date of this letter and is valid for a period of up to 18 months, subject to any legislative changes impacting land use submissions. Our assessment is limited to the impact of the proposed physical structure on the air navigation system and installations; it neither constitutes nor replaces any approvals or permits required by Transport Canada, other Federal Government departments, Provincial or Municipal land use authorities or any other agency from which approval is required. Innovation, Science and Economic Development Canada addresses any spectrum management issues that may arise from your proposal and consults with NAV CANADA Engineering as deemed necessary.

Please submit by email to <u>landuse@navcanada.ca</u>

October 11, 2022

NAV CANADA Email: landuse@navcanada.ca

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Courtney Morrison <cmorrison@strum.com>

22-4067 Port Hawkesbury Paper Wind Farm Project

1 message

Land Use <LandUse@navcanada.ca> To: General Mailbox <general@strum.com> Thu, Nov 3, 2022 at 3:28 PM

Hi / Bonjour

La version française figure ci-dessous / French Text Follows

Thank you for your submission, your Land Use file number is 22-4067. Please reference this number for all transactions on this submission.

At NAV CANADA, we are currently working on different ways to diminish our turnaround times. Please note that we currently have the following time frame published on our website:

Processing times vary, but NAV CANADA attempts to respond within 8 to 12 weeks of receiving a complete proposal. The accuracy and completeness of the initial documentation and your cooperation and promptness in remedying deficiencies or inaccuracies will help to expedite the review process.

If you have any questions or would like an update of your file, please do not hesitate to contact us.

Merci pour votre soumission. Votre numéro de dossier d'utilisation de terrain est 22-4067. Veuillez mentionner ce numéro pour toutes les transactions reliées sur cette soumission.

Chez NAV CANADA, nous travaillons actuellement sur différentes façons de réduire nos délais d'exécution. Veuillez noter que nous avons actuellement le délai suivant publié sur notre site Web:

Les délais de traitement varient selon l'exhaustivité et l'exactitude des renseignements soumis et selon la complexité du projet. En général, NAV CANADA tente de répondre dans un délai de 8 à 12 semaines.

N'hésitez pas à nous contacter si vous avez des questions ou souhaitez une mise à jour de votre dossier.

Regards / Merci,

Jean Séguin Land Use Specialist | Spécialiste d'utilisation de terrains NAV CANADA Group: LandUse@navcanada.ca www.navcanada.ca

From: General Mailbox <general@strum.com> Sent: October 11, 2022 12:40 PM To: Land Use <LandUse@navcanada.ca> Subject: [EXT] Port Hawkesbury Paper Wind Farm Project

General Mailbox <general@strum.com>

22-4067 LUF Port Hawkesbury Wind Project

1 message

Aldana-Cameron, Natalia <Natalia.Aldana-Cameron@navcanada.ca> To: "general@strum.com" <general@strum.com> Fri, Dec 2, 2022 at 10:15 AM

Hello,

Your Land Use file number for this project is: 22-4067 - I am the Land use specialist assessing your file.

Could you please make the necessary correction in the spreadsheet and send it back to me.

										20.5 30 July 2
				acle Information for As					on com	
		LAT	LONG	Ground	Structure	Total	Crane	Lighted		Construction
	stacle ID	dd mm ss.ss	-ddd mm ss.ss	Elevation (Feet)	Height (Feet)	Height (Feet)	Swing Radius (Feet)	Y/N	Y/N	Date
Ex	ample 1	60 39 16.59	-110 36 14.01	2162.5001	463.0001	2625.5002		Y	N	15-Jun-0
	1	45 32 14.456	-61 25 37.703	498.6877	639.7638	1138.4514				
	2	45 34 11.101	-61 31 36.663	515.0919	639.7638	1154.8556				
	3	45 34 42.075	-61 27 50.028	564.3045	639.7638	1204.0682				
	4	45 35 35.422	-61 26 41.37	580 7087	639.7638	1220.4724				
	5	45 31 23.953	-61 31 41.028	543.3071	639.7638	1183.0709	544.6194	166m		
	6	45 33 9.845	-61 34 11.16	433.0709	639.7638	1072.8346				
	7	45 31 5.152	-61 29 48.588	534.7769	639.7638	1174.5407				
	8	45 32 15.761	-61 29 33.888	551.1811	639.7638	1190.9449				
	9	45 30 53.275	-61 31 14.128	515.4199	639.7638	1155.1837	515.0919	157m		
	10	45 30 22.986	-61 26 13.114	436.3517	639.7638	1076.1155				
	11	45 29 39.857	-61 26 51.26	452.7559	639.7638	1092.5197				
	12	45 30 15.203	-61 27 0.288	469.1601	639.7638	1108.9239				
	13	45 34 29.512	-61 26 27.041	524.9344	639.7638	1164.6982				
	14	45 34 13.568	-61 25 42.084	534.7769	639.7638	1174.5407				
	15	45 32 45.938	-61 25 48.4	495.4068	639.7638	1135.1706				
	16	45 31 50.739	-61 27 15.23	521.6535	639.7638	1161.4173				
	17	45 31 32.599	-61 26 1.966	465.8793	639.7638	1105.6430				
	18	45 30 56.602	-61 27 23.211	511.8110	639.7638	1151.5748				
	19	45 32 20.005	-61 31 0.418	570.5381	639.7638	1210.3018	570.8661	174m		
	20	45 33 4.991	-61 30 1.583	600.3937	639.7638	1240.1575	1			
	21	45 35 33.229	-61 28 59.48	524.9344	639.7638	1164.6982	1			
	22	45 34 37.936	-61 30 49.496	521.6535	639.7638	1161.4173		-		
	23	45 33 7.741	-61 28 55.048	567.5853	639.7638	1207.3491				
	24	45 32 54.09	-61 27 44.07	577.4278	639.7638	1217.1916	500.0450	404		
	25	45 32 28.159	-61 32 30.077	526.5748	639.7638	1166.3386	528.2152	161m		
	26	45 32 51.368	-61 33 29.43	524.2782	639.7638	1164.0420	524.9344	160m	-	
	27	45 35 11.847	-61 28 25.767	564.3045	639.7638	1204.0682				
	28	45 33 27.56	-61 25 49.501	492.1260	639.7638	1131.8898				
	29	45 33 31.631	-61 30 56.411	531.4961	639.7638	1171.2598				1

new spreadsheet to me with the new changes please see the highlighted numbers inside the red rectangle conversion from meters to feet the correct ones.

Thank You

Best regards,

Natalia Aldana

Land Use Specialist | Spécialiste d'utilisation de terrains

AERONAUTICAL INFORMATION MANAGEMENT (AIM) NAV CANADA

Personal: Natalia.Aldana-Cameron@navcanada.ca

Group: LandUse@navcanada.ca

1601 avenue Tom Roberts Avenue Ottawa, ON K1V 1E5

T. (613) 248-3751

www.navcanada.ca

From: General Mailbox <general@strum.com> Sent: October 11, 2022 12:40 PM To: Land Use <LandUse@navcanada.ca> Subject: 22-4067 LUF

Good afternoon,

Please find attached a notification letter for the proposed Port Hawkesbury Paper Wind Farm development located near the community of Lincolnville within Guysborough County, Nova Scotia. A confirmation of receipt would be greatly appreciated. For questions or comments, kindly contact the undersigned.

Thank you,

Courtney Morrison, MREM (she/her)

Community Engagement Coordinator

Engineering • Surveying • Environmental

Bedford • Antigonish • Moncton • St. John's

<u>Head Office</u>: Railside, 1355 Bedford Highway Bedford, NS B4A 1C5

Tel: 902.835.5560 (24/7) Fax: 902.835.5574

Cell: 902.293.4914 (call/text)

www.strum.com

CONFIDENTIALITY NOTICE

This e-mail, and any files sent with it, is confidential, and is for the use of the intended recipient only. If you have received this e-mail in error, please telephone 902.835.5560 or e-mail the sender, and delete the original. Thank you.

This electronic message, as well as any transmitted files included in the electronic message, may contain privileged or confidential information and is intended solely for the use of the individual(s) or entity to which it is addressed. If you have received this electronic message in error please notify the sender immediately and delete the electronic message. Any unauthorized copying, disclosure or distribution of the electronic message is strictly forbidden. NAV CANADA accepts no liability for any damage caused by any virus and/or other malicious code transmitted by this electronic communication.

Le présent message électronique et tout fichier qui peut y être joint peuvent contenir des renseignements privilégiés ou confidentiels destinés à l'usage exclusif des personnes ou des organismes à qui ils s'adressent. Si vous avez reçu ce message électronique par erreur, veuillez en informer l'expéditeur immédiatement et supprimez le. Toute reproduction, divulgation ou distribution du présent message électronique est strictement interdite. NAV CANADA n'assume aucune responsabilité en cas de dommage causé par tout virus ou autre programme malveillant transmis par ce message électronique.

3 attachments

221011 EMI Study Notification PHP Wind Farm - NavCAN.pdf 1672K

Signed F-LDU-100 Land Use Proposal Submission Form - General.pdf 142K

PHPW z-Idu-100-multiple-obstacle_Wind Turbines.xlsx 85K

Ms. Heather Allen-Johnson NCS Managed Services Email: heather@ncsnetwork.net

Dear Ms. Allen-Johnson,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Port Hawkesbury Police 8 Paint Street Port Hawkesbury, NS B9A 3J6

To whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345

Table 1: Proposed Turbine Locations & Specifications

29

615845

5046099

45.55878628

-61.51566976

162

120

75

357

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences <u>sdickey@strum.com</u>

Port Hawkesbury Volunteer Fire Department 309 Hiram St, Port Hawkesbury, NS B9A 2R4

To whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Royal Canadian Mounted Police Email: Windfarm_Coordinator@rcmp-grc.gc.ca

To Whom it may concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Protected A

Courtney Morrison Strum

GV 1620-7-3

October 03, 2022

SUBJECT: Port Hawkesbury Paper Wind Farm Project

Ref. # 2022-09-26_0012

Greetings,

Reference is made to your email request dated September 26, 2022, on your plans for the wind farm project called "Port Hawkesbury Paper" in the province of Nova Scotia.

According to the Radio Advisory Board of Canada (RABC) and Canadian Wind Energy Association (CanWea), the radius of the consultation zone for fixed Land Mobile Radio (LMR) sites is 1 km. The RCMP currently have no "owned" radio towers or Point-To-Point (PTP) microwave links in this area.

However, the **surrounding area is receiving radio coverage from TMR2** operated as a leased system through Bell Canada. We do recommend that you request coordination with Bell who are acting on behalf of RCMP in the province of Nova Scotia with leased towers.

Should you require additional information, please direct any questions or concerns to the undersigned.

Sincerely,

Phil Tanguay

Wind Farm Coordinator, National Radio Services Royal Canadian Mounted Police (RCMP) / Government of Canada windfarm_coordinator@rcmp-grc.gc.ca / Tel: 343-552-1290

Coordonnateur parc éolien, Services de radio nationaux Gendarmerie royale du Canada (GRC) / Gouvernement du Canada windfarm_coordinator@rcmp-grc.gc.ca / Tél: 343-552-1290

Rogers Communications Inc. 333 Bloor Street East, 10th Floor Toronto, ON M4W 1G9

To Whom It May Concern:

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Seaside Communications 1318 Grand Lake Road P.O. Box # 4558 Reserve Mines, NS B1E 1L2

To Whom it May Concern,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

Mr. Johnny Duykers Fire Chief Tracadie & District Volunteer Fire Department 995 NS-16 Monastery, NS B0H 1W0 Email: jduykers@ns.sympatico.ca

Dear Mr. Duykers,

Re: Port Hawkesbury Paper Wind Farm Project Mulgrave, Nova Scotia

Strum Consulting, a Nova Scotia-based environmental and engineering consulting firm, has been retained by Port Hawkesbury Paper (our client) to support with the proposed Port Hawkesbury Paper Wind Farm (the "Project") within Guysborough County, Nova Scotia.

On behalf of our client, Strum is conducting an electromagnetic interference ("EMI") study on the placement of 29 wind turbines near the community of Mulgrave, Nova Scotia.

As an aspect of our investigation, we would like to formally consult with you on the Project and provide a discussion opportunity with respect to the proposed turbine layout.

More specifically, Strum is soliciting feedback, details, and specifications of existing operations from stakeholders to determine if there would be any potential interference with your existing operations as a result of the proposed wind turbine installations. The turbine specifications are as follows:

- Total of 29 turbines
- Tip height of each turbine is 195 metres
- Hub height of each turbine is 120 metres
- 3-blade rotor; turbine blade sweep diameter is 150 metres (blade length is 75 metres)

A map showing the proposed locations of the turbines is attached (Drawing 1); and a summary of the proposed turbine details, including coordinates and elevations, is provided in Table 1, below.

Engineering • Surveying • Environmental

<u>Head Office</u> Railside, 1355 Bedford Hwy. Bedford, NS B4A 1C5 t. 902.835.5560 (24/7) f. 902.835.5574 Antigonish Office 3-A Vincent's Way Antigonish, NS B2G 2X3 t. 902.863.1465 (24/7) f. 902.863.1389 Moncton Office 45 Price Street Moncton, NB E1A 3R1 t. 1.855.770.5560 (24/7) f. 902.835.5574

Project # 21-7890

Turbine ID	Easting (UTM Z20)	Northing (UTM Z20)	Latitude	Longitude	Base of Turbine Elevation (m)	Turbine Hub Height (m)	Blade Length (m)	Total Elevation (m)
1	622801	5043849	45.53734885	-61.42713979	152	120	75	347
2	614950	5047301	45.56975035	-61.52685091	157	120	75	352
3	619844	5048349	45.57835411	-61.46389666	172	120	75	367
4	621300	5050024	45.59317279	-61.44482503	177	120	75	372
5	614950	5042141	45.52332024	-61.52806344	166	120	75	361
6	611635	5045350	45.5527347	-61.56976655	132	120	75	327
7	617400	5041606	45.5180978	-61.49683013	163	120	75	358
8	617678	5043791	45.53771148	-61.49274679	168	120	75	363
9	615551	5041205	45.5147986	-61.52059098	157	120	75	352
10	622100	5040394	45.5063849	-61.43697621	133	120	75	328
11	621298	5039047	45.49440482	-61.44757214	138	120	75	333
12	621081	5040134	45.50422318	-61.45008	143	120	75	338
13	621650	5047996	45.57486436	-61.44084471	160	120	75	355
14	622634	5047253	45.57043568	-61.42835655	163	120	75	358
15	622550	5044816	45.54609383	-61.43011124	151	120	75	346
16	620700	5043076	45.53076085	-61.45423048	159	120	75	354
17	622300	5042547	45.52572198	-61.43387953	142	120	75	337
18	620559	5041402	45.51572291	-61.45644761	156	120	75	351
19	615799	5043887	45.53889028	-61.51678265	174	120	75	369
20	617049	5045299	45.55138644	-61.50043962	183	120	75	378
21	618309	5049899	45.5925636	-61.48318893	160	120	75	355
22	615957	5048148	45.57720452	-61.51374893	159	120	75	354
23	618490	5045411	45.5521504	-61.48195776	173	120	75	368
24	620037	5045019	45.5483582	-61.46224163	176	120	75	371
25	613850	5044103	45.54115525	-61.54168805	161	120	75	356
26	612550	5044796	45.54760235	-61.55817506	160	120	75	355
27	619052	5049253	45.58662417	-61.47382408	172	120	75	367
28	622501	5046100	45.55765546	-61.43041707	150	120	75	345
29	615845	5046099	45.55878628	-61.51566976	162	120	75	357

Table 1: Proposed Turbine Locations & Specifications

Shawn Duncan, BSc. President sduncan@strum.com

Scott Dickey, BSc. (Hons), MREM Manager, Environmental Sciences sdickey@strum.com

APPENDIX O: SHADOW FLICKER

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Real Case Assumptions for shadow calculations Maximum distance for influence

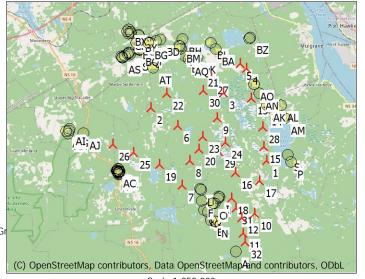
Calculate only when more than 20 % of sun is covered by the blade

Please look in WTG table

Minimum sun height over horizon for influence3 °Day step for calculation1 daysTime step for calculation1 minutes

Sunshine probability S (Average daily sunshine hours) [CHARLOTTETOWN]JanFebMarAprMayJunJulAugSepOctNovDec3.374.184.425.046.347.547.957.195.763.982.632.31

No operational time reduction. It is assumed the WTGs are always running with worst case wind direction.


A ZVI (Zones of Visual Influence) calculation is performed before flicker calculation so non visible WTG do not contribute to calculated flicker values. A WTG will be visible if it is visible from any part of the receiver window. The ZVI calculation is based on the following assumptions:

Height contours used: Elevation Grid Data Object: Pirate Harbour - August 2022_EMDG Obstacles used in calculation

Receptor grid resolution: 1.0 m

All coordinates are in

UTM (north)-NAD83(NSRS/CSRS) (US+CA GPS meas. at curr. year), GRS80 Zone: 20 WTGs

Scale 1:250,000 Shadow receptor

••	105											
					WTG	type					Shadow da	ta
	Easting	Northing	Z	Row data/Description	Valid	Manufact.	Type-generator	Power,	Rotor	Hub	Calculation	RPM
	, i i i i i i i i i i i i i i i i i i i	-						rated	diameter	height	distance	
			[m]					[kW]	[m]	[m]	[m]	[RPM]
1	622,768	5,043,893	162.7	7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
2	615,029	5,047,261	155.5	5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
3	619,844	5,048,348	172.8	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
4	621,302	5,049,972	174.3	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
5	620,898	5,050,285	170.3	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
6	616,839	5,046,106	181.3	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
7	617,181	5,042,189	162.3	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
8	617,665	5,043,802	178.0) VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
9	619,430	5,046,660	181.7	7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
10	622,063	5,040,422	142.0) VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
11	621,294	5,039,075	140.6	5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
12	621,199	5,040,109	149.2	2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
13	621,650	5,047,995	167.9	9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
14	622,605	5,047,281	165.8	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
15	622,550	5,044,815	165.0) VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
16	620,700	5,043,075	164.8	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
17	622,300	5,042,546	152.4	VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
18	620,509	5,041,401	160.6	5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
19	615,685	5,043,510	171.9	9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
20	618,273	5,044,587	184.2	2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
21	618,361	5,049,776	170.8	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
22	616,057	5,048,219	160.3	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
23	618,491	5,045,410	187.1	VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
24	620,008	5,045,055	180.2	2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
25	613,929	5,044,260	162.6	5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
26	612,550	5,044,795	159.8	3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
27	619,017	5,049,289	174.2	2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
28	622,476	5,046,111	155.6	5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
29				2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .		VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
30				3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .		VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
31				9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .		VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
32	621,457	5,038,480	136.7	7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: .	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0

K New WTG

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Real Case

Shadow receptor-Input

Sha	uow re	eceptor-i	nput						
No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
	-	-			-	a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
Δ	620 829	5,037,842		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	619,233			1.0	1.0	1.0			2.0
							90.0	"Green house mode"	
		5,040,998		1.0	1.0	1.0	90.0	"Green house mode"	2.0
D	619,377	5,040,999	139.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
E	619,164	5,039,914	137.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
F	618,520	5,041,156	149.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
G	618.938	5,040,438	143.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,041,329		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,041,434		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	-								
J				1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,040,575		1.0	1.0	1.0	90.0	"Green house mode"	2.0
L	618,476	5,041,898	153.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
M	618,431	5,041,959	151.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
N	619,424	5,039,800	127.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,039,804		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,819		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,158		1.0	1.0	1.0	90.0		2.0
								"Green house mode"	
		5,043,189		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	624,185			1.0	1.0	1.0	90.0	"Green house mode"	2.0
Т	612,985	5,042,820	142.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
U	613,011	5,042,850	141.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
V	612,970	5,042,896	139.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,042,922		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,042,960		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,042,985		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,042,990		1.0	1.0	1.0	90.0	"Green house mode"	2.0
AA	613,012	5,043,011	140.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AB	613,030	5,043,021	139.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AC	612,881	5,043,022	143.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AD	612 899	5,043,031	141 9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,060		1.0	1.0	1.0	90.0	"Green house mode"	2.0
				1.0		1.0	90.0		2.0
AF		5,045,568			1.0			"Green house mode"	
		5,045,625		1.0	1.0	1.0	90.0	"Green house mode"	2.0
AH	609,598	5,045,423	121.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AI	609,662	5,045,759	120.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AJ	610,615	5,045,497	98.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AK	622,742	5,047,563	163.1	0.5	0.5	1.5	90.0	"Green house mode"	2.0
		5,047,576		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,046,705		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,048,318		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	621,827			1.0	1.0	1.0	90.0	"Green house mode"	2.0
AP	621,836	5,048,941	157.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AQ	617,498	5,050,497	137.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AR	613,104	5,050,505	66.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
	613,082		68.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,049,884		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	-	5,050,602	64.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,461		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,782	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AX	613,538	5,050,835	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AY	613,509	5,050,849	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AZ	616,971	5,051,190	138.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,207		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,482		1.0	1.0	1.0	90.0	"Green house mode"	2.0
							90.0	"Green house mode"	
		5,051,498		1.0	1.0	1.0			2.0
		5,051,764		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,516		1.0	1.0	1.0	90.0	"Green house mode"	2.0
BF	614,922	5,051,522	129.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BG	614,796	5,051,533	126.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,841		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,554		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,644		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,653		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,599		1.0	1.0	1.0	90.0	"Green house mode"	2.0
ВМ	616,914	5,051,363	136.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Real Case

con	itinued fro	m previous	page						
No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
BN	617,259	5,050,682	136.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BO	614,235	5,051,042	119.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BP	616,830	5,051,368	137.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BQ	614,214	5,051,062	119.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BR	613,589	5,050,729	83.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BS	613,607	5,050,734	82.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BT	614,239	5,051,082	118.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BU	614,411	5,051,084	121.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BV	614,251	5,051,092	117.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BW	615,285	5,051,678	121.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BX	613,488	5,052,383	96.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BY	614,163	5,051,998	127.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
ΒZ	621,520	5,052,000	125.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CA	613,601	5,052,224	95.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CB	613,605	5,052,235	95.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CC	614,170	5,052,036	127.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CD	613,385	5,052,274	90.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CE	613,465	5,052,108	92.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CF	613,490	5,052,115	92.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CG	613,474	5,052,120	92.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CH	613,616	5,052,137	97.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CI	621,476	5,051,932	123.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CJ	613,467	5,052,382	95.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

Calculation Results

Shadow receptor

Shad	
	Shadow, expected values
No.	Shadow hours
	per year
	[h/year]
A	0:00
В	12:51
С	6:39
D	18:54
E	10:01
F	2:18
G	6:56
н	18:05
!	17:44
J	15:32
K	4:35
L	7:02
M	7:21
N	5:15
O P	6:00 8:14
Q	0:00
R	0:00
S	7:28
T	0:00
Ů	0:00
V	0:00
Ŵ	0:00
X	0:00
Ŷ	0:00
Z	0:00
AA	0:00
AB	0:00
AC	0:00
AD	0:00
AE	0:00
AF	0:00
AG	0:00
AH	0:00
	5100

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Real Case

00.10	
	tinued from previous page Shadow, expected values
No.	Shadow hours per year
	[h/year]
AI	0:00
AJ	2:00
AK	89:41
AL	8:13
	16:23
AM	
AN	19:45
AO	1:14
AP	1:14
AQ	13:25
AR	0:00
AS	0:00
AT	0:00
AU	0:00
AV	15:08
AW	0:00
AX	0:00
AY	0:00
AZ	0:00
BA	3:05
BB	0:00
BC	0:00
BD	0:00
BE	0:00
BF	0:00
BG	0:00
BH	0:00
BI	0:00
BJ	0:00
BK	0:00
BL	1:42
BM	0:00
BN	8:39
BO	0:00
BP	0:00
BQ	0:00
BR	0:00
BS	0:00
ΒT	0:00
ΒU	0:00
BV	0:00
BW	0:00
BX	0:00
BY	0:00
BZ	0:00
CA	0:00
CB	0:00
CC	0:00
CD	0:00
CE	0:00
CF	0:00
CG	0:00
СН	0:00
CI	0:00
CJ	0:00

Total amount of flickering on the shadow receptors caused by each WTG Worst case Expected No. Name [h/year] [h/year] 1 VESTAS V150-4 5 4500 150 0 IOI hub. 120 0 m (TOT. 195 0 m) (132)

I VESTAS V150-4.5 4500 150.0 101 nub: 120.0 m (101: 195.0 m) (132)	15:52	0:11	
2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (133)	0:00	0:00	
3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (134)	3:38	1:21	
4 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (135)	4:33	1:27	
5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (136)	12:58	4:14	

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Real Case

coi	ntinued	from	previous	page
No.	Name			

continued from previous page		
No. Name	Worst case	Expected
	[h/year]	[h/year]
6 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (137)	0:00	0:00
7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (138)	26:15	12:02
8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (139)	0:00	0:00
9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (140)	0:00	0:00
10 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (141)	0:00	0:00
11 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (142)	5:12	1:58
12 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (143)	29:17	10:35
13 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (144)	92:17	38:11
14 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (145)	268:31	92:51
15 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (146)	18:20	8:46
16 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (147)	0:00	0:00
17 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (148)	2:16	0:44
18 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (149)	100:25	44:09
19 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (150)	0:00	0:00
20 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (151)	0:00	0:00
21 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (152)	66:41	20:16
22 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (153)	0:00	0:00
23 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (154)	0:00	0:00
24 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (155)	0:00	0:00
25 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (156)	0:00	0:00
26 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (157)	5:14	2:00
27 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (158)	21:54	6:27
28 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (159)	7:57	3:02
29 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (160)	0:00	0:00
30 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (161)	0:00	0:00
31 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (162)	64:12	25:25
32 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (163)	4:50	1:33

Total times in Receptor wise and WTG wise tables can differ, as a WTG can lead to flicker at 2 or more receptors simultaneously and/or receptors may receive flicker from 2 or more WTGs simultaneously.

The calculation of the total expected values for a given receptor assumes a weighted average directional reduction for all WTGs contributing to shadow flicker within the same day. In the case where shadow flicker from different WTGs is not concurrent within the day, the total expected time at a given receptor may deviate marginally from the individual flicker time caused by each turbine separately.

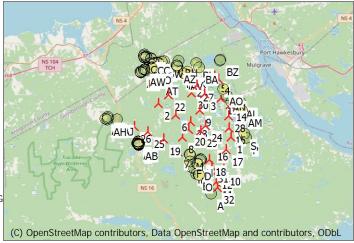
SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Worst Case Assumptions for shadow calculations

Maximum distance for influence

Calculate only when more than 20 % of sun is covered by the blade Please look in WTG table

Minimum sun height over horizon for influence 3 ° Day step for calculation 1 days Time step for calculation 1 minutes


The calculated times are "worst case" given by the following assumptions: The sun is shining all the day, from sunrise to sunset The rotor plane is always perpendicular to the line from the WTG to the sun The WTG is always operating

A ZVI (Zones of Visual Influence) calculation is performed before flicker calculation so non visible WTG do not contribute to calculated flicker values. A WTG will be visible if it is visible from any part of the receiver window. The ZVI calculation is based on the following assumptions:

Height contours used: Elevation Grid Data Object: Pirate Harbour - August 2022_EMDG Obstacles used in calculation

Receptor grid resolution: 1.0 m

All coordinates are in

Scale 1:400,000

UTM (north)-NAD83(NSRS/CSRS) (US+CA GPS meas. at curr. year), GRS80 Zone:	20 人 New WTG		adow rec				
WTGs		0 516		optor			
	WTG type					Shadow da	ata
Easting Northing Z Row data/Description		. Type-generator	Power,	Rotor	Hub	Calculation	RPM
5 5 1		51 5	rated	diameter	height	distance	
[m]			[kW]	[m]	[m]	[m]	[RPM]
1 622,768 5,043,893 162.7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
2 615,029 5,047,261 155.5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC		V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
3 619,844 5,048,348 172.8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
4 621,302 5,049,972 174.3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
5 620,898 5,050,285 170.3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
6 616,839 5,046,106 181.3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
7 617,181 5,042,189 162.3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
8 617,665 5,043,802 178.0 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
9 619,430 5,046,660 181.7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
10 622,063 5,040,422 142.0 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
11 621,294 5,039,075 140.6 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
12 621,199 5,040,109 149.2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
13 621,650 5,047,995 167.9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
14 622,605 5,047,281 165.8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
15 622,550 5,044,815 165.0 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
16 620,700 5,043,075 164.8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
17 622,300 5,042,546 152.4 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
18 620,509 5,041,401 160.6 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
19 615,685 5,043,510 171.9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
20 618,273 5,044,587 184.2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
21 618,361 5,049,776 170.8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
22 616,057 5,048,219 160.3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
23 618,491 5,045,410 187.1 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
24 620,008 5,045,055 180.2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
25 613,929 5,044,260 162.6 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
26 612,550 5,044,795 159.8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
27 619,017 5,049,289 174.2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
28 622,476 5,046,111 155.6 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
29 619,585 5,044,467 180.2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
30 618,499 5,048,444 176.3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
31 620,794 5,040,750 157.9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0
32 621,457 5,038,480 136.7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TC	T:Yes VESTAS	V150-4.5-4,500	4,500	150.0	120.0	2,500	0.0

Shadow receptor-Input

No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
Α	620,829	5,037,842	114.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
В	619,233	5,040,980	132.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
С	619,274	5,040,998	132.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Worst Case

Cal	Julation	I. VESIAS	- Jali	2023	- Shau	000 - 000	SI Case		
		m previous							
No.	Easting	Northing	Z	Width	Height	Elevation		Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
	619,377			1.0	1.0	1.0	90.0	"Green house mode"	2.0
E		5,039,914		1.0	1.0	1.0	90.0	"Green house mode"	2.0
F		5,041,156		1.0	1.0	1.0	90.0	"Green house mode"	2.0
G				1.0	1.0	1.0	90.0	"Green house mode"	2.0
	619,581	5,041,329		1.0	1.0	1.0	90.0	"Green house mode"	2.0
I	619,689			1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,041,473		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,040,575		1.0	1.0	1.0	90.0	"Green house mode"	2.0
L		5,041,898		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	618,431	5,041,959		1.0	1.0	1.0	90.0	"Green house mode"	2.0
N	619,424			1.0	1.0	1.0	90.0	"Green house mode"	2.0
0				1.0	1.0	1.0	90.0	"Green house mode"	2.0
Р		5,043,819		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,158		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,189		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,044,297		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,042,820		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	613,011	5,042,850		1.0	1.0	1.0	90.0	"Green house mode"	2.0
V				1.0	1.0	1.0	90.0	"Green house mode"	2.0
W	612,972	5,042,922		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	612,940	5,042,960		1.0	1.0	1.0	90.0	"Green house mode"	2.0
Y	612,885	5,042,985		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,042,990		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,011		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,021		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	612,881	5,043,022		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,043,031		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	612,852			1.0	1.0	1.0	90.0	"Green house mode"	2.0
AF	609,461	5,045,568		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	609,654	5,045,625		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,045,423		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,045,759		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	610,615	5,045,497	98.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,047,563		0.5	0.5	1.5	90.0	"Green house mode"	2.0
	623,659 623,925			1.0 1.0	1.0 1.0	1.0 1.0	90.0 90.0	"Green house mode" "Green house mode"	2.0 2.0
	622,203	5,048,318		1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
AO		5,048,926		1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
	621,836	5,048,920		1.0	1.0	1.0	90.0 90.0	"Green house mode"	2.0
	617,498	5,050,497		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,505	66.8	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,523	68.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,049,884		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	613,049		64.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
AV		5,050,461		1.0	1.0	1.0	90.0	"Green house mode"	2.0
AW		5,050,782	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,835	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,849	0.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
	616,971	5,051,190		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,207		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,482		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	614,481	5,051,498		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	615,577			1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,516		1.0	1.0	1.0	90.0	"Green house mode"	2.0
BF		5,051,522		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,533		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,051,841		1.0	1.0	1.0	90.0	"Green house mode"	2.0
BI		5,051,554		1.0	1.0	1.0	90.0	"Green house mode"	2.0
		5,050,644		1.0	1.0	1.0	90.0	"Green house mode"	2.0
	618,047			1.0	1.0	1.0	90.0	"Green house mode"	2.0
	618,935			1.0	1.0	1.0	90.0	"Green house mode"	2.0
BM				1.0	1.0	1.0	90.0	"Green house mode"	2.0
BN	617,259			1.0	1.0	1.0	90.0	"Green house mode"	2.0
BO	614,235			1.0	1.0	1.0	90.0	"Green house mode"	2.0
BP	616,830	5,051,368	137.3	1.0	1.0	1.0	90.0	"Green house mode"	2.0

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Worst Case

con	tinued fro	m previous	page						
No.	Easting	Northing	Z	Width	Height	Elevation	Slope of	Direction mode	Eye height
						a.g.l.	window		(ZVI) a.g.l.
			[m]	[m]	[m]	[m]	[°]		[m]
BQ	614,214	5,051,062	119.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BR	613,589	5,050,729	83.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BS	613,607	5,050,734	82.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
ΒT	614,239	5,051,082	118.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BU	614,411	5,051,084	121.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BV	614,251	5,051,092	117.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BW	615,285	5,051,678	121.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
ВX	613,488	5,052,383	96.1	1.0	1.0	1.0	90.0	"Green house mode"	2.0
BY	614,163	5,051,998	127.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
ΒZ	621,520	5,052,000	125.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CA	613,601	5,052,224	95.7	1.0	1.0	1.0	90.0	"Green house mode"	2.0
СВ	613,605	5,052,235	95.2	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CC	614,170	5,052,036	127.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CD	613,385	5,052,274	90.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CE	613,465	5,052,108	92.6	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CF	613,490	5,052,115	92.4	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CG	613,474	5,052,120	92.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
СН	613,616	5,052,137	97.0	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CI	621,476	5,051,932	123.5	1.0	1.0	1.0	90.0	"Green house mode"	2.0
CJ	613,467	5,052,382	95.9	1.0	1.0	1.0	90.0	"Green house mode"	2.0

Calculation Results

Shadow receptor

	Shadow, wors	st case	
No.	Shadow hours		Max shadow
	per year	per year	hours per day
	[h/year]	[days/year]	[h/day]
А	0:00	0	0:00
В	29:32	124	0:27
С	16:22	89	0:23
D	42:51	163	0:30
E	21:39	112	0:20
F	5:47	39	0:15
G	15:10	85	0:17
Н	47:17	143	0:38
1	46:15	108	0:42
J	40:48	109	0:39
K	10:05	56	0:17
L	16:11	60	0:27
M	17:00	60	0:28
N	13:27	78	0:20
0	15:28	85	0:20
Р	18:36	99	0:21
Q	0:00	0	0:00
R	0:00	0	0:00
S	17:52	67	0:24
Т	0:00	0	0:00
U	0:00	0	0:00
V	0:00	0	0:00
W	0:00	0	0:00
Х	0:00	0	0:00
Y	0:00	0	0:00
Z	0:00	0	0:00
AA	0:00	0	0:00
AB	0:00	0	0:00
AC	0:00	0	0:00
AD	0:00	0	0:00
AE	0:00	0	0:00
AF	0:00	0	0:00
AG	0:00	0	0:00
AH	0:00	0	0:00
AI	0:00	0	0:00
AJ	5:14	24	0:17
AK	258:34	233	1:49

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Worst Case

continued from previous page
Shadow, worst case

	Shadow, wors	st case	
No.	Shadow hours	Shadow days	Max shadow
	per year	per year	hours per day
	[h/year]	[days/year]	[h/day]
AL	21:03	65	0:32
AM	35:34	111	0:26
AN	53:34	76	0:54
AO	3:20	20	0:15
AP	3:18	20	0:15
AQ	44:00	82 0	0:38
AR AS	0:00 0:00	0	0:00 0:00
AS	0:00	0	0:00
AU	0:00	0	0:00
AV	50:26	74	0:51
AW	0:00	0	0:00
AX	0:00	Ö	0:00
AY	0:00	Ő	0:00
AZ	0:00	0	0:00
BA	9:25	43	0:20
BB	0:00	0	0:00
BC	0:00	0	0:00
BD	0:00	0	0:00
BE	0:00	0	0:00
BF	0:00	0	0:00
BG	0:00	0	0:00
BH	0:00	0	0:00
BI	0:00	0	0:00
BJ	0:00	0	0:00
ΒK	0:00	0	0:00
BL	5:18	35	0:15
BM	0:00	0	0:00
ΒN	28:46	68	0:30
BO	0:00	0	0:00
BP	0:00	0	0:00
BQ	0:00	0	0:00
BR	0:00	0	0:00
BS	0:00	0	0:00
BT	0:00	0	0:00
BU BV	0:00	0 0	0:00
ВW	0:00 0:00	0	0:00 0:00
BX	0:00	0	0:00
BY	0:00	0	0:00
BZ	0:00	0	0:00
CA	0:00	0	0:00
CB	0:00	Ő	0:00
CC	0:00	Ő	0:00
CD	0:00	0	0:00
CE	0:00	0	0:00
CF	0:00	0	0:00
CG	0:00	0	0:00
СН	0:00	0	0:00
CI	0:00	0	0:00
CJ	0:00	0	0:00

Total amount of flickering on the shadow receptors caused by each WTG No. Name

	[h/year]
1 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (132)) 15:52
2 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (133)) 0:00
3 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (134)) 3:38
4 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (135) 4:33
5 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (136)	
6 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (137)) 0:00
7 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (138)	
8 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 195.0 m) (139)) 0:00

Worst case

SHADOW - Main Result

Calculation: Vestas - Jan 2023 - Shadow - Worst Case

...continued from previous page No. Name

	L	,
9 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (140)	0:00
10 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (141)	0:00
11 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (142)	5:12
12 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (143) 2 ^r	9:17
13 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (144) 9	2:17
14 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (145) 26	8:31
15 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (146) 1	8:20
16 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (147)	0:00
17 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (148)	2:16
18 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (149) 10	0:25
19 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (150)	0:00
20 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (151)	0:00
21 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (152) 6	6:41
22 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (153)	0:00
23 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (154)	0:00
24 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (155)	0:00
25 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (156)	0:00
26 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (157)	5:14
27 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (158) 2	1:54
28 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (159)	7:57
29 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (160)	0:00
30 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (161)	0:00
31 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (162) 6	4:12
32 VESTAS V150-4.5 4500 150.0 !O! hub: 120.0 m (TOT: 19	5.0 m) (163)	4:50

Total times in Receptor wise and WTG wise tables can differ, as a WTG can lead to flicker at 2 or more receptors simultaneously and/or receptors may receive flicker from 2 or more WTGs simultaneously.

Worst case [h/year]

APPENDIX P: SOUND

Overview of Infrasound

Infrasound is an inaudible range of low frequency sound between one and 10 Hz generated as a result of large masses/objects in motion. Infrasound is emitted from both natural sources (e.g., wind, oceans) and artificial sources such as road traffic, ventilation systems, and aircrafts (Keith, 2018). Levels of infrasound emitted from large-scale wind turbines attenuate over space as a function of site-specific characteristics (i.e., topography, structures, etc.) and climatic conditions (Rod & Heiger-Bernays, 2012; Schmidt & Klokker, 2014). Generally, frequencies below 100 Hz are attenuated by three dBA over a doubling of distance when downwind of turbines (between distances of 0.3 to 20 km) and six dBA over a doubling of distance when upwind of turbines (between distances of 0.4 to 3 km) (Shepherd & Hubbard, 1991). Health Canada reported that infrasound generated by wind turbines can be measured up to 10 km away, however, in many cases was below background levels (Health Canada, 2014; Keith, 2018).

When evaluating potential effects of infrasound, it is important that these frequencies be discussed in the context of the sound pressure levels, or in other words, the loudness of the sound. Studies show that the lower the frequency of the sound, the louder the sound needs to be in order to be audible/perceived. For instance, very loud sounds at very low frequencies (i.e., 165 dB at 2 Hz, reducing to 145 dB at 20 Hz) may result in pain (Leventhall, 2006) and infrasound has been shown to cause annoyance, when the sound level exceeds the threshold of hearing (i.e., the lowest sound levels that a listener can detect) (HGC, 2010). Further, research shows that to be physically felt, infrasound must exceed 100–110 dB (Ellenbogen et al., 2012). While there is some variation in the literature and between individual sensitivities, there is fairly good agreement on the level of the threshold of hearing among the various studies that have been completed (Figure P.1).

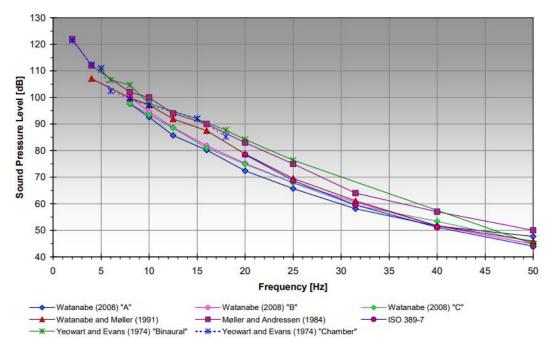


Figure P.1. Threshold of Hearing Data from Various Papers (Source: HGC, 2010)

Measuring Infrasound

In 2010, Sonus, an acoustic consulting firm based in South Australia, completed a study to measure infrasound produced by a range of natural and manmade sources using a methodology specifically designed to measure infrasound (Table P.1). Sound levels measured using the G-weighting filters, expressed as dBG. The G-weighting network was applied to the measured infrasound pressure levels as it has been standardized to determine the human perception (i.e. threshold of hearing) and annoyance due to noise that lies within the infrasound frequency range. By comparison, when measuring audible sound levels, meters are usually equipped with weighting circuits to simulate the frequency response characteristics of the human ear.

Source	Infrasound Level (dBG)							
Threshold of Hearing	85							
Ambient Infrasound								
(As measured 100 m from nearest wind turbine with	62							
negligible wind and no turbine operation)								
Natural Sources								
Adjacent to Beach – 25 m from high water	75							
Cliff Face – 250 m from coastline	69							
Inland Forest – 8 km from coastline	57							
Anthropogenic	Sources							
Business District (70 m from two major road corridors)	76							
Gas Fired Power Station (350 m away)	74							
Wind Farm – 100 m downwind	66							
Wind Farm – 200 m downwind	63							
Wind Farm – 360 m downwind	61							
Outside Residence – 1.2 km from nearest wind turbine	58							

Table P.1: Measured Levels of Infrasound from Natural & Manmade Sources

Source: Sonus 2010

The results of the study indicate that while turbines do produce infrasound, levels are well below established levels that can be perceived by humans and are comparable to natural and urban sources that are common in the environment.

Infrasound and Potential Health Concerns

Concerns about infrasound from wind turbines is thought to have originated from the experience of neighbours of early wind turbine designs with downwind rotors (rotors downwind of the tower). In contrast, all modern utility scale wind turbines have upwind rotors that produce significantly lower infrasound emissions (Bastasch et al., 2006). Several studies and panels have been assembled to evaluate the perceived health effects associated with wind turbines.

A study by Evans et al. (2013) concluded that measured infrasound levels at rural locations both near to and away from wind farms were no higher than infrasound levels measured at the urban locations. Human activity and traffic were the main sources of infrasound within urban locations, while localized wind conditions were found to be the main source of infrasound in rural locations. All measurements were below the levels that can be perceived by humans, with most by a

significant margin (Evans et al., 2013).

A scientific advisory panel with expertise in audiology, acoustics, occupational/environmental medicine, and public health was assembled by the wind industry in early 2009 to conduct a review of current literature available on the issue of perceived health effects of wind turbines (Colby et al., 2009). Following their review and analysis of the information, the panel reached consensus on the following conclusions:

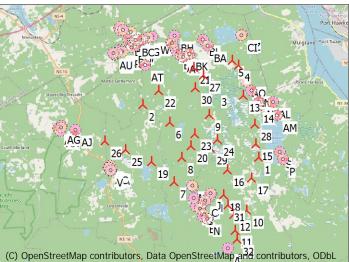
- There is no evidence that the audible or sub-audible sounds emitted by wind turbines have any direct adverse physiological effects.
- The ground-borne vibrations from wind turbines are too weak to be detected by, or to affect, humans.
- Sounds emitted by wind turbines are not unique. There is no reason to believe, based on the levels and frequencies of the sounds and the panel's experience with sound exposures in occupational settings, that the sounds from wind turbines could plausibly have direct adverse health consequences.

The Chief Medical Officer of Health in Ontario also conducted a review of papers and reports (from 1970 to 2010) on wind turbines and health from scientific bibliographic databases, grey literature, and from a structured Internet search. The report concluded that "low frequency sound and infrasound from current generation upwind model turbines are well below the pressure sound levels at which known health effects occur. Further, there is no scientific evidence to date that vibration from low frequency wind turbine noise causes adverse health effects" (CMOH of Ontario, 2010).

The Massachusetts panel concluded that "measured levels of infrasound produced by modern upwind wind turbines at distances as close as 68 m are well below that required for non-auditory perception". Further, the panel concluded that "the weight of the evidence suggests no association between noise from wind turbines and measures of psychological distress or mental health problems" (Ellenbogan et al., 2012).

A new study found that infrasound (generated acoustically as part of the study to correspond to real world wind farms) had no influence on reported annoyance or on the measured response on the autonomic nervous system (Maijila et al., 2021). The study concluded that participants did not detect infrasonic ranges of simulated wind turbine noise.

Overall, potential impacts on nearby residents as a result of Project generated infrasound are anticipated to be negligible based on the scientific findings discussed above and distances to nearby receptors.



DECIBEL - Main Result

Calculation: Vestas - Jan 2023 - Noise

Noise calculation model: ISO 9613-2 General Wind speed (in 10 m height): Loudest up to 95% rated power Ground attenuation: Fixed values, Agr: 0.0, Dc: 0.0 Meteorological coefficient, CO: 0.0 dB Type of demand in calculation: 1: WTG noise is compared to demand (DK, DE, SE, NL etc.) Noise values in calculation: All noise values are mean values (Lwa) (Normal) Pure tones: Fixed penalty added to source noise of WTGs with pure tones Model: 5.0 dB(A) Height above ground level, when no value in NSA object: 0.0 m; Don't allow override of model height with height from NSA object Uncertainty margin: 0.0 dB; Uncertainty margin in NSA has priority Deviation from "official" noise demands. Negative is more restrictive, positive is less restrictive .: 0.0 dB(A)

All coordinates are in UTM (north)-NAD83(NSRS/CSRS) (US+CA GPS meas. at curr. year), GRS80 Zone: 20 WTGs

从 New WTG

Scale 1:250,000 Noise sensitive area

00103														
				WTG	type					Noise o	data			
Easting	Northing	z	Row data/Description			Type-generator	Power.	Rotor	Hub	Creator		Wind	Status	LwA.ref
						.)	rated	diameter				speed		
		[m]					[kW]	[m]	[m]			[m/s]		[dB(A)]
1 622.768	5.043.893		VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4.500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
4 621,302	5,049,972	174.3	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
5 620,898	5,050,285	170.3	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
6 616,839	5,046,106	181.3	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
7 617,181	5,042,189	162.3	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
8 617,665	5,043,802	178.0	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
9 619,430	5,046,660	181.7	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
10 622,063	5,040,422	142.0	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
11 621,294	5,039,075	140.6	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
12 621,199	5,040,109	149.2	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
13 621,650	5,047,995	167.9	VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 PO4 & PO4 VTL1- 12-2021	7.0	From other hub height	105.0 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 PO4 & PO4 VTL1- 12-2021		From other hub height	105.0 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150		VESTAS	V150-4.5-4,500	4,500	150.0	120.0		Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021		From other hub height	107.6 f
			VESTAS V150-4.5 4500 150	Yes	VESTAS	V150-4.5-4,500	4,500	150.0	120.0	EMD	Level 0 VTL1 PO4-0S & PO4-0S VTL1- 12-2021	7.0	From other hub height	107.6 f
f) From oth	er nub heig	gnι												

Calculation Results

Council	Lov (ol
Sound	ievei

Noi	se sensitive area					Demands	Sound level	Demands fulfilled ?
No.	Name	Easting	Northing	Z	Immission height	Noise	From WTGs	Noise
				[m]	[m]	[dB(A)]	[dB(A)]	
Α	Noise sensitive point: User defined (1200)	620,829	5,037,842	114.8	0.0	0.0	37.8	No
В	Noise sensitive point: User defined (1201)	619,233	5,040,980	132.4	0.0	0.0	35.5	No
С	Noise sensitive point: User defined (1202)	619,274	5,040,998	132.1	0.0	0.0	35.7	No
D	Noise sensitive point: User defined (1203)	619,377	5,040,999	139.1	0.0	0.0	36.2	No
E	Noise sensitive point: User defined (1204)	619,164	5,039,914	137.4	0.0	0.0	33.9	No
F	Noise sensitive point: User defined (1205)	618,520	5,041,156	149.0	0.0	0.0	34.0	No
G	Noise sensitive point: User defined (1206)	618,938	5,040,438	143.1	0.0	0.0	33.7	No
Н	Noise sensitive point: User defined (1207)	619,581	5,041,329	149.3	0.0	0.0	37.5	No

Demands Sound level Demands fulfilled?

DECIBEL - Main Result

Calculation: Vestas - Jan 2023 - Noise

	ntinued from previous page se sensitive area	
No.	Name	East
I	Noise sensitive point: User defined (1208)	619,

Nois	se sensitive area						Demands	Sound level	Demands fulfilled
No.	Name		Easting	Northing	Z	Immission height	Noise	From WTGs	Noise
		llean defined (1000)	(10 (00	F 041 424	[m]	[m]	[dB(A)]	[dB(A)]	Ne
	Noise sensitive point:			5,041,434		0.0	0.0	38.2	No
J	Noise sensitive point:			5,041,473		0.0	0.0	37.7	No
K	Noise sensitive point:	, ,		5,040,575		0.0	0.0	33.2	No
L	Noise sensitive point:			5,041,898		0.0	0.0	35.6	No
Μ	Noise sensitive point:	User defined (1212)		5,041,959		0.0	0.0	35.9	No
Ν	Noise sensitive point:	User defined (1213)	619,424	5,039,800	127.9	0.0	0.0	34.8	No
0	Noise sensitive point:	User defined (1214)	619,474	5,039,804	122.2	0.0	0.0	35.1	No
Р	Noise sensitive point:	User defined (1215)	624,390	5,043,819	145.5	0.0	0.0	33.1	No
Q	Noise sensitive point:	User defined (1216)	612,949	5,043,158	135.8	0.0	0.0	33.4	No
R	Noise sensitive point:	User defined (1217)	612,922	5,043,189	137.3	0.0	0.0	33.5	No
S	Noise sensitive point:	User defined (1218)	624,185	5,044,297	140.9	0.0	0.0	34.3	No
Т	Noise sensitive point:	User defined (1219)	612,985	5,042,820	142.1	0.0	0.0	31.8	No
U	Noise sensitive point:	User defined (1220)	613,011	5,042,850	141.9	0.0	0.0	32.0	No
V	Noise sensitive point:			5,042,896		0.0	0.0	32.1	No
W	Noise sensitive point:			5,042,922		0.0	0.0	32.3	No
Х	Noise sensitive point:			5,042,960		0.0	0.0	32.4	No
Ŷ	Noise sensitive point:			5,042,985		0.0	0.0	32.4	No
Z	Noise sensitive point:			5,042,990		0.0	0.0	32.8	No
ÂA	Noise sensitive point:			5,043,011		0.0	0.0	32.8	No
AB				5,043,021		0.0	0.0	32.8	No
	Noise sensitive point:								
AC	Noise sensitive point:			5,043,022		0.0	0.0	32.6	No
AD	Noise sensitive point:			5,043,031		0.0	0.0	32.7	No
AE	Noise sensitive point:			5,043,060		0.0	0.0	32.7	No
AF	Noise sensitive point:			5,045,568		0.0	0.0	22.4	No
AG	Noise sensitive point:	• • •		5,045,625		0.0	0.0	23.1	No
AH	Noise sensitive point:			5,045,423		0.0	0.0	23.1	No
AI	Noise sensitive point:	, ,		5,045,759		0.0	0.0	23.0	No
AJ	Noise sensitive point:	• • •		5,045,497	98.6	0.0	0.0	27.7	No
AK	Noise sensitive point:	User defined (1237)	622,742	5,047,563	163.1	0.0	0.0	45.8	No
AL	Noise sensitive point:	User defined (1238)	623,659	5,047,576	144.5	0.0	0.0	35.7	No
AM	Noise sensitive point:	User defined (1239)	623,925	5,046,705	141.6	0.0	0.0	34.7	No
AN	Noise sensitive point:	User defined (1240)	622,203	5,048,318	158.4	0.0	0.0	39.4	No
AO	Noise sensitive point:	User defined (1241)	621,827	5,048,926	157.0	0.0	0.0	38.1	No
AP	Noise sensitive point:	User defined (1242)	621,836	5,048,941	157.7	0.0	0.0	38.1	No
AQ	Noise sensitive point:	User defined (1243)	617,498	5,050,497	137.8	0.0	0.0	35.6	No
AR	Noise sensitive point:	User defined (1244)	613,104	5,050,505	66.8	0.0	0.0	23.4	No
AS	Noise sensitive point:			5,050,523	68.1	0.0	0.0	23.3	No
AT	Noise sensitive point:			5,049,884		0.0	0.0	30.6	No
AU	Noise sensitive point:			5,050,602	64.5	0.0	0.0	23.0	No
AV	Noise sensitive point:			5,050,461		0.0	0.0	36.8	No
AW	Noise sensitive point:			5,050,782	0.0	0.0	0.0	23.5	No
AX	Noise sensitive point:			5,050,835	0.0	0.0	0.0	23.6	No
AY	Noise sensitive point:			5,050,849	0.0	0.0	0.0	23.5	No
AZ	Noise sensitive point:			5,051,190		0.0	0.0	30.6	No
BA	Noise sensitive point:	, ,		5,051,207		0.0	0.0	34.2	No
BB	Noise sensitive point:			5,051,482		0.0	0.0	23.9	No
BC	Noise sensitive point:			5,051,498		0.0	0.0	23.9	No
BD	Noise sensitive point:			5,051,764		0.0	0.0	25.4	No
BE	Noise sensitive point:			5,051,516		0.0	0.0	22.8	No
BF	Noise sensitive point:			5,051,522		0.0	0.0	24.8	No
BG	Noise sensitive point:	• • •		5,051,533		0.0	0.0	24.5	No
BH	Noise sensitive point:			5,051,841		0.0	0.0	28.4	No
BI	Noise sensitive point:	• • •		5,051,554		0.0	0.0	24.4	No
BJ	Noise sensitive point:	, ,		5,050,644	69.9	0.0	0.0	23.4	No
BK	Noise sensitive point:	User defined (1263)	618,047	5,050,653	138.8	0.0	0.0	37.2	No
BL	Noise sensitive point:	User defined (1264)	618,935	5,051,599	138.1	0.0	0.0	32.2	No
BM	Noise sensitive point:	User defined (1265)	616,914	5,051,363	136.8	0.0	0.0	29.8	No
BN	Noise sensitive point:	User defined (1266)	617,259	5,050,682	136.4	0.0	0.0	33.6	No
BO	Noise sensitive point:	User defined (1267)	614,235	5,051,042	119.3	0.0	0.0	24.7	No
BP	Noise sensitive point:	User defined (1268)	616,830	5,051,368	137.3	0.0	0.0	29.6	No
BQ	Noise sensitive point:	, ,		5,051,062		0.0	0.0	24.6	No
BR	Noise sensitive point:	, ,		5,050,729	83.2	0.0	0.0	24.0	No
BS	Noise sensitive point:			5,050,734	82.7	0.0	0.0	24.1	No
BT	Noise sensitive point:	• • •		5,051,082		0.0	0.0	24.6	No
BU	Noise sensitive point:	, ,		5,051,084		0.0	0.0	24.9	No
20			,	.,,	/	5.0	0.0		

DECIBEL - Main Result

Calculation: Vestas - Jan 2023 - Noise

Car	culatio	11. VC.	3103 -		23 - 1	10130																
	ntinued fr se sensit Name	•		age			Easting	Nort	hing		Immissio	_ 0	t No	oise	From V	VTGs	Demano	ls fulfill Noise	ed?			
	Nielee ee		malati I	الممتد ماملا		1741	(14 051		1 000	[m]	[r	-		(A)]	[dB(/			Nie				
BV BW	Noise sensitive point: User defined (1274)			614,251 615,285		1,092	121.5		0. 0.		0.0 0.0	24. 25.		No								
BX		loise sensitive point: User defined (1275) loise sensitive point: User defined (1276)			613,488			96.1		0.		0.0	23. 19.			No No						
BY	Noise se		•		•		614,163			127.9		0.		0.0	21.			No				
BZ	Noise se		•				621,520			125.9		0.		0.0	31.			No				
CA	Noise se		•		•		613,601			95.7		0.		0.0	20.			No				
CB	Noise se						613,605			95.2		0.	0	0.0	20.			No				
CC	Noise se	ensitive	point: L	Jser def	ined (12	281)	614,170	5,05	2,036	127.9		0.	0	0.0	21.	8		No				
CD	Noise se						613,385			90.4		0.		0.0	19.			No				
CE	Noise se						613,465			92.6		0.		0.0	20.			No				
CF	Noise se		•		•		613,490			92.4		0.		0.0	20.			No				
CG	Noise se		•		•		613,474			92.5		0.		0.0	20.			No				
CH CI	Noise se Noise se						613,616 621,476			97.0 122.5		0. 0.		0.0 0.0	20. 31.			No No				
CJ	Noise se						613,467			95.9		0.		0.0	31. 19.			No				
05	10130 30	115111100	point. c			_00)	013,407	5,05	2,502	/0./		0.	0	0.0	17.	0		NO				
Distances (m)																						
	WTG																					
NSA		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
A		11062			12443		5675		8928			2297	10186	9604	7182	5234	4928	3573				11421
B	4581	7559	7393	9227	9453		2382		5684	2884		2150	7420	7147		2558	3444	1344		3733	8840	7905
C D	4538 4458	7566 7624	7371 7363	9200 9177	9427 9409		2408 2498		5664 5661	2848 2747		2120 2027	7389 7356	7111 7062	5030 4962	2519 2461	3399 3307	1299 1201		3725 3754	8825 8836	7904 7946
E	5369	8431	8462				3019		6751	2943		2027	8455	8131		3515	4095	2005	5003		9895	8867
F	5053	7033	7312	9244	9433		1692		5578			2876	7521	7362		2904	4027	2000		3439	8621	7480
G	5158	7863	7961		10040		2481		6241	3125		2285	8029	7763		3171	3968	1843	4474		9356	8297
Н	4091	7478	7024	8813	9052	5508	2550	3129	5333	2642	2831	2026	6980	6676	4579	2074	2979	931	4465	3511	8535	7739
1	3941	7462	6916	8689		5473	2620		5233			2008	6848	6534		1928	2838	821	4510		8448	7696
J	3964	7394	6878	8662	8903		2551		5191	2652		2080	6828	6526		1928	2879	884		3396	8400	7633
K	5262	7621	7859	9755	9959		2207		6130			2557	7991	7768		3211	4118	2003		4033	9207	8083
L M	4733 4749	6376 6300	6594 6543	8554 8511	8730	4515 4441	1328 1272		4857 4805	3879 3944		3257 3329	6874 6840	6784 6763		2516 2528	3879 3913	2093 2152		2697 2632	7879 7817	6768 6694
N	5285	8660	8558		10588		3278		6860			1801	8492	8129		3514	3976	1934		4923		9067
0	5251	8681			10577		3309		6856			1752	8475	8106		3493	3938	1903		4931	10034	9081
Р	1623	9974	6416	6884	7348	7889	7391		5716	4118	5665	4894	4994	3894	2092	3764	2447	4573	8710	6165	8475	9423
Q	9847	4600	8630	10780	10676	4881	4341	4760	7367	9516	9291	8795	9956	10500	9743	7752	9372	7762	2759	5513	8549	5939
R	9871	4585			10675		4374		7376			8831	9964			7779	9400	7795		5530	8542	5927
S	1473	9624	5938	6366	6831		7314		5310			5143	4483	3376		3693		4680		5919	7997	9025
T U	9842	4889		10969			4243		7502 7465				10093		9771 9740	7720 7693	9319 9295	7657 7637		5575	8791 8752	6212 6173
V	9813 9848	4851 4826		10930 10931			4222 4269		7405				10056 10067			7093		7686		5542 5566	8740	6153
Ŵ	9844	4802		10913			4272		7462				10052			7730		7689		5556	8719	6130
Х	9872	4782		10913			4310		7471	9469			10061		9787	7761	9369	7728		5575	8709	6113
Υ	9925	4784	8786	10939	10840	5038	4369	4849	7507	9529	9274	8797	10096	10627	9837	7816	9426	7787	2849		8724	6120
Z	9760	4708		10810			4208		7361	9372		8643		10475	9674	7651	9261	7627		5462	8618	6032
AA	9796	4704		10825			4248		7383	9414		8685		10500		7688	9299	7668	2719		8624	6033
AB	9777 9925	4687 4752		10804 10918			4233 4379		7362 7491				9952 10081			7670 7819		7653 7798	2700	5471 5614	8605	6015 6090
AC AD	9923 9907	4732		10918			4379		7491				10061			7801	9431 9414	7783		5595	8697 8679	6074
AE	9952	4732		10917			4416		7499				10088			7849		7835		5632	8687	6074
AF	13413		10749				8427				13498									8867	9845	7109
AG	13229		10548				8274				13357								6392	8682	9646	6909
AH	13258		10655				8243				13308									8715	9784	7038
AI	13239		10507				8323				13416								6430		9582	6853
AJ	12259	4753		11586			7352 7733				12462									7712 5240	8849	6085
AK AL	3670 3789	7719 8636	3002 3892	2807 3361		6080 6976	7733 8425		3433 4327			7612 7862	1174 2052	314 1094		4931 5386	5037 5210	6554 6932	8137 8950	5369 6160	4908 5737	6717 7629
AM	3040	8914	4399	4190	4688		8116		4327			7137	2615	1440		4856		6309		6036	6355	8012
AN	4461	7251	2359	1883	2360		7923		3230			8270	640	1113		5454	5773	7121		5419	4109	6146
AO	5120	7000	2066	1170	1646		8184	6602	3299			8839	948	1820	4174	5959		7640		5609	3569	5813
AP	5133	7012	2078	1161	1639		8201		3315			8855	964	1830		5975		7656		5626	3574	5824
AQ	8449	4070	3182	3840		4440	8313				12037		4848	6036		8084		9582	7218		1125	2695
AR	11709	3772	7077	8215	7797		9261				14061						12162		7456		5307	3734
AS AT	11738 9701	3799 2625	7104 4951	8238 6165	7819 5774	5800 4144	9287 7961				14089 12440		8934 6781	10060 7909			12191 10254			7886 6156	5331 3225	3763 1902
	9701 o continuv				5774	4144	1701	0000	0309	11/20	12440	11302	0/01	1909	0700	0/73	10204	10041	037/	0100	3220	1702

DECIBEL - Main Result

Calculation: Vestas - Jan 2023 - Noise

oun				20	20 1	10130																
continued from previous page WTG																						
NSA	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
AU	11810	3883	7160	8277	7856	5881	9372	8219	7501	13598	14173	13286	8988	10117	11125	10733	12268	11846	7566	7967	5376	3838
AV	8319	4144	3037	3673	3240	4432	8285	6659	4192	10961	11951	10939	4689	5878	7468	7986	9174	9497	7226	5906	978	2757
AW	11606	3868	6863	7916	7487	5789	9377	8166	7282	13488	14105	13203	8683	9823	10901	10597	12106	11754	7615	7865	5035	3673
AX	11549	3872	6779	7812	7380	5768	9382	8155	7221	13458	14088	13181	8595	9739	10838	10560	12062	11730	7633	7840	4938	3632
AY	11581	3897	6811	7842		5796	9406				14116		8627		10870					7869	4969	3663
AZ	9319	4383	4042	4499		5086	9003				12864		5666	6858	8472		10155			6730	1983	3109
BA	8105	5797	2916	2374		5653	9258				12299		3995	5149	7183		9175	9884		6696	1698	4391
BB	11259	4260	6238	7015		5883		8326			14169		7999		10490					7884	4266	3637
BC	11248	4272	6220	6990		5885	9692				14169		7979		10477					7883	4245	3638
BD	10662	4536	5467	5999		5798	9708				13918		7148	8337		10087				7667	3421	3578
BE BF	11627 10943	4380 4262	6658 5857	7475 6565		6116 5746		8546 8193			14428 13983		8432 7596		10873 10157					8147 7702	4706 3856	3893 3493
BG	10943	4202	5969	6691		5800		8247			14052		7590		10157					7768	3050 3974	3493 3547
BH	9785	5010	4467	4635		5740		8062			13450		5989	7180	8917		10671			7355	2440	3759
BI	11059	4299	5983	6699		5820		8267			14071		7726		10276					7788	3987	3567
BJ	11668	3821	6982	8079		5785		8142			14090		8807		10975					7868	5183	3709
BK	8245	4540	2923	3325		4705		6862			12025		4477	5670	7373	8029	9155	9574		6070	931	3144
BL	8606	5837	3376	2872		5879		7900			12744		4512	5667	7687	8705		10319		7043	1911	4439
BM	9490	4515	4204	4603	4127	5258	9178	7599	5334	12092	13046	12042	5812	7004	8640	9112	10332	10591	7949	6911	2147	3259
BN	8743	4084	3484	4105	3661	4596	8493	6893	4571	11330	12289	11284	5149	6337	7901	8350	9572	9834	7343	6179	1427	2741
BO	11132	3863	6222	7147	6705	5581	9330	8012	6796	13193	13894	12962	8017	9176	10388	10260	11715	11503	7670	7614	4315	3360
BP	9546	4484	4267	4684	4209	5262	9185	7612	5378	12132	13078	12076	5883	7075	8698	9151	10380	10624	7941	6933	2208	3242
BQ	11160	3887	6250	7171		5608		8038			13922		8044		10417					7642	4341	3388
BR	11445	3755	6693	7750		5651	9264				13971		8512		10737					7724	4866	3520
BS	11433	3752	6678	7733		5645	9261				13965		8497		10725					7717	4849	3511
BT	11155	3902	6237	7150		5615		8046			13927		8029		10409					7646	4324	3392
BU	11025	3872	6084	6980		5539		7976			13842		7871		10274					7558	4161	3305
BV	11152	3909	6230	7139		5618		8050			13929		8021		10406					7648	4315	3394
BW BX	10798 12578	4424 5349	5645 7529	6254 8177		5785	9676 10842				13962 15429		7354	8539	9994 11807	10165				7695 9147	3616 5526	3544 4893
BY	12578	4815	6752	7420			10042				14760		9207 8490		11042					8474	4749	4093
BZ	8203	8037	4019	2040			10202				12928		4008	4843	7259		9487		10302		3864	6644
CA	12387	5164	7349	8023			10654				15235				11618					8953	5352	4699
CB	12392	5174	7351	8023			10663				15242				11623					8960	5354	4706
CC	11842	4851	6768	7425			10296				14790		8502		11062					8504	4761	4258
CD	12581	5275	7559	8245	7771	7070	10775	9492	8250	14690	15388	14458	9307	10485	11817	11753	13195	12999	9061	9110	5567	4857
CE	12411	5092	7405	8122	7653	6885	10591	9307	8078	14508	15204	14275	9160	10336	11650	11573	13019	12816	8880	8926	5422	4674
CF	12397	5092	7387	8100	7630	6880	10590	9303	8065	14499	15197	14268	9141	10318	11635	11563	13007	12809	8881	8919	5403	4666
CG	12412	5101	7403	8117	7647	6892	10600	9314	8080	14513	15209	14280	9158	10334	11651	11577	13022	12822	8889	8932	5420	4679
СН	12317	5076	7290	7985	7514	6838	10567	9266	7988	14443	15152	14218	9039	10217	11551	11502	12938	12758	8871	8871	5300	4616
CI	8142	7962	3938	1968			10648				12859		3941	4787	7198	8891	9423		10221		3789	6569
CJ	12592	5353	7546	8197	7721	7125	10848	9552	8264	14729	15438	14505	9285	10465	11822	11787	13220	13045	9145	9157	5544	4903
	WTG																					
NICA	12	24	25	24	27	20	20	20	21	20												

NSA	23	24	25	26	27	28	29	30	31	32
A	7921	7259	9423	10811	11589	8431	6740	10854	2908	895
В	4492	4148	6236	7695	8312	6070	3505	7500	1578	3346
С	4481	4122	6262	7721	8295	6033	3482	7485	1541	3333
D	4499	4105	6350	7811	8298	5978	3474	7496	1439	3267
E	5538	5210	6804	8220	9377	7027	4573	8556	1832	2705
F	4254	4173	5542	6992	8148	6340	3477	7287	2310	3974
G	4992	4739	6300	7732	8851	6686	4080	8017	1882	3191
Н	4225	3751	6367	7839	7980	5591	3138	7197	1344	3411
I .	4153	3635	6416	7891	7884	5445	3035	7110	1299	3442
J	4099	3602	6345	7819	7840	5443	2994	7062	1372	3507
Κ	4839	4672	6016	7446	8720	6710	3995	7871	2117	3475
L	3513	3509	5124	6596	7411	5810	2798	6546	2587	4535
Μ	3451	3474	5056	6529	7353	5797	2760	6485	2655	4611
Ν	5687	5287	7077	8497	9498	7010	4669	8693	1667	2424
0	5691	5278	7113	8534	9496	6985	4664	8694	1624	2385
Р	6110	4552	10470	11880	7667	2986	4848	7489	4728	6092
Q	5982	7310	1475	1685	8626	9975	6764	7665	8207	9710
R	5995	7328	1470	1648	8623	9991	6784	7662	8241	9748
S	5802	4245	10256	11645	7186	2492	4603	7038	4907	6425
Т	6085	7370	1722	2022	8845	10046	6803	7876	8079	9520
U	6049	7337	1683	1999	8805	10012	6771	7837	8062	9510
V	6066	7362	1667	1945	8799	10035	6799	7832	8113	9567

DECIBEL - Main Result

Calculation: Vestas - Jan 2023 - Noise

continued from previous page										
	WTG	nompre	evious p	aye						
NSA	23	24	25	26	27	28	29	30	31	32
W	6054	7352	1645	1920	8779	10025	6791	7813	8118	9578
X Y	6067 6108	7372 7418	1633 1648	1876 1841	8774 8795	10043 10088	6814 6862	7809 7831	8159 8219	9623 9684
z	5955	7259	1545	1873	8677	9930	6700	7710	8062	9541
AA	5981	7288	1549	1843	8687	9959	6732	7721	8104	9584
AB	5960	7268	1530	1837	8667	9939	6712	7702	8089	9573
AC	6097	7411	1621	1803	8770	10080	6858	7807	8233	9705
AD AE	6077 6109	7392 7430	1604 1613	1798 1761	8752 8764	10060 10097	6839 6879	7789 7803	8218 8272	9693 9749
AF	9032	10560	4656	3185	10255	13027	10184	9485	12315	13934
AG	8840	10370	4488	3013	10054	12832	9999	9284	12161	13798
AH	8893	10417	4484	3018	10181	12897	10033	9400	12132	13742
AI AJ	8836 7876	10371 9404	4523 3537	3045 2059	9999 9218	12820 11877	10007 9029	9237 8417	12208 11232	13861 12915
AJ	4765	3710	9412	10561	4106	1476	4422	4333	7086	9174
AL	5603	4436	10279	11451	4948	1882	5124	5232	7403	9359
AM	5586	4250	10291	11534	5547	1565	4883	5698	6728	8587
AN	4715	3932	9215	10275	3331	2224	4656	3706	7698	9866
AO AP	4847	4277 4294	9174 9189	10155	2834 2841	2889	4991 5009	3363 3374	8241 8257	10453
AP AQ	4864 5183	4294 5993	7186	10169 7549	2841 1941	2901 6635	5009 6381	2284	10290	10468 12653
AR	7414	8796	6299	5737	6036	10351	8858	5775	12422	14642
AS	7443	8825	6320	5753	6062	10379	8887	5803	12450	14670
AT	5591	6859	5752	5709	3924	8252	7009	3657	10744	13038
AU	7521	8900	6403	5828	6111 1791	10443	8965	5862	12532	14753
AV AW	5118 7382	5893 8724	7238 6541	7631 6051	5785	6488 10184	6295 8821	2184 5585	10204 12447	12568 14691
AX	7346	8676	6587	6121	5693	10110	8782	5507	12424	14675
AY	7376	8707	6603	6130	5725	10142	8813	5540	12453	14703
AZ	5976	6846	7568	7775	2793	7490	7214	3143	11118	13479
BA	5850	6196	8766	9292	1936	6018	6748	2870	10567	12913
BB BC	7293 7290	8497 8489	7241 7259	6952 6975	5065 5045	9657 9641	8693 8688	5062 5047	12467 12465	14770 14769
BD	6990	8041	7683	7598	4238	8920	8326	4423	12188	14528
BE	7587	8831	7257	6874	5500	10063	9001	5458	12737	15025
BF	7077	8227	7330	7133	4664	9292	8457	4719	12269	14588
BG	7152	8315	7325	7103	4780	9402	8537	4823	12340	14655
BH BI	6588 7171	7399 8333	8202 7345	8366 7121	3216 4793	7885 9416	7795 8556	3690 4839	11703 12359	14066 14675
BJ	7406	8769	6420	5891	5923	10279	8848	5691	12442	14673
BK	5261	5931	7604	8033	1673	6344	6374	2255	10277	12642
BL	6204	6631	8884	9330	2311	6531	7162	3185	11007	13359
BM	6158	7026	7705	7886	2953	7650	7396	3322	11300	13661
BN BO	5414 7059	6263 8317	7234 6789	7539 6471	2243 5093	6937 9604	6637 8477	2559 4993	10543 12205	12905 14490
BP	6185	7067	7677	7844	3017	7714	7430	3367	11334	13693
BQ	7087	8346	6808	6484	5119	9632	8505	5021	12232	14518
BR	7233	8567	6478	6024	5615	10015	8670	5416	12308	14558
BS	7224	8557 8343	6482	6032	5599	10002	8661	5402	12302	14553
BT BU	7089 6988	8343 8227	6829 6841	6510 6559	5103 4943	9621 9475	8506 8400	5011 4867	12236 12147	14523 14440
BV	7089	8342	6840	6523	5095	9616	8506	5006	12238	14526
BW	7040	8134	7541	7407	4430	9094	8396	4559	12238	14570
BX	8582	9809	8135	7646	6335	10960	9992	6374	13737	16025
BY BZ	7882	9076	7741	7381	5558	10186	9280	5606	13057 11274	15360
БZ СА	7253 8387	7108 9615	10841 7971	11505 7503	3690 6160	5966 10777	7778 9797	4666 6187	13543	13521 15831
CB	8394	9621	7982	7515	6162	10780	9804	6191	13550	15839
CC	7910	9101	7780	7420	5571	10203	9307	5626	13087	15391
CD	8555	9797	8033	7526	6374	10983	9970	6390	13701	15983
CE	8373	9620	7861	7370	6226	10824	9790	6226	13517	15799
CF CG	8364 8378	9609 9623	7867 7873	7381 7383	6207 6224	10807 10823	9780 9794	6210 6226	13510 13523	15792 15805
CH	8307	9023 9540	7883	7419	6106	10715	9719 9719	6122	13461	15748
CI	7173	7032	10762	11429	3610	5907	7701	4586	11203	13453
CJ	8593	9822	8135	7642	6353	10977	10004	6390	13747	16035

APPENDIX Q: PROJECT TEAM CURRICULUM VITAE

PROFESSIONAL ASSOCIATIONS

- Environmental Services Association of Nova Scotia (ESANS)
- Canadian Land Reclamation Association (former Board Member)
- Halifax Chamber of Commerce
- OTANS member

AREAS OF SPECIALIZATION

- Project Management
- Environmental Impact Assessment
- Public and Regulatory Consultation
- Permitting
- Infrastructure Planning and Construction
- Environmental Management System
- Natural Resource Inventories

RELEVANT EXPERIENCE

EDUCATION

• BSc., McGill University, Montreal (1990)

TRAINING

- M.Eng. (pending), University of New Brunswick, Fredericton
- CEAA Screening Training
- Contaminated Sites Assessment and Clean-up
- EMS and Project Planning
- Conflict Management and Dispute Resolution
- Project Management Bootcamp, 2007
- ISO 14001 Orientation

Mr. Duncan is the President of Strum Consulting based in Bedford Nova Scotia. Shawn has also worked for both provincial and federal government departments, as well as having senior environmental experience in the private sector for the oil and gas industry. He has worked professionally in the environmental field throughout Canada and internationally for over 30 years. His areas of specialization include project planning and management, environmental impact assessment, infrastructure planning and construction, public consultation and regulatory support.

REPRESENTATIVE PROJECTS AND ROLES

NATURAL RESOURCE INVENTORIES AND SURVEYS:

Environmental Effects Monitoring Programs, Paper Mills, NB – Project Manager: Involved in the development, design, and implementation of EEM programs for five pulp mills that were required under federal regulations. These programs where multi-year in scope and involved both freshwater and marine systems.

Assessment of Downstream Fish Migration, NB – Field Coordinator: Involved in the study of the downstream migration patterns of juvenile blue-backed herring and alewife on the St. John River.

Fish Habitat Assessments, NS, NB – Program Manager: Coordinated a fish habitat assessment program that assessed over 500 watercourses that intersected a proposed pipeline corridor, in support of the EIA and provincial and federal permitting.

Aerial Moose Survey, NB – Program Manager: Managed and conducted a provincial aerial winter survey for moose, using helicopter.

Development of Watershed Management Plan, Keswick River, NB – Program Manager: Developed a watershed management plan for the Keswick River System in conjunction with the federal Department of Fisheries and Oceans.

Numerous Fisheries and Aquatic Habitat Surveys, NS, NB – Project Manager: Coordinated a number of freshwater fisheries and aquatic habitat surveys throughout the Atlantic provinces to provide baseline and monitoring data for a number projects and developments.

Identification of Fish Habitat Improvement Opportunities, NB – Project Manager: Identified particularly beneficial opportunities for fish habitat improvement in New Brunswick, and determined strategies for project implementation.

Development of Fisheries Management Plans, Recreational Fisheries Developments, NB – Technical Support: Involved in the preparation of fisheries management plans to provide improved recreational salmonid fishing on private landholdings.

Tropical Ecology, Bellairs Institute, Barbados – Field Assistant: Attended a field course on tropical ecology and participated in research surveys of mangrove environments, reef ecosystems, and marine fisheries.

Fish Behavioural Study, St. Andrews, NB – Field Assistant: Conducted a two-month study underwater survey to observe the behaviour of juvenile Pollock under induced threat from predation.

Marine Benthic Habitat Surveys, NS, NB – Field Assistant: Conducted a number of marine benthic habitat and sampling surveys for the federal government to support dredging or wharf construction activities.

ENVIRONMENTAL ASSESSMENTS:

Sydney Tar Ponds Environmental Impact Statement, Sydney, NS – Manager: Mr. Duncan managed the EIS for the cleanup, which involved managing a large team of professionals, working closely with the proponent and their engineering consultant to prepare the 7-volume EIS for submission to federal and provincial regulators. Components included public and regulatory consultation, environmental baseline field work and human and ecological risk assessments. He also provided testimony during the three week public hearing process as part of a joint review panel.

Environmental Impact Assessment, Keltic Petrochemical and LNG Facilities, NS – Project Manager: Mr. Duncan acted as Project Manager for the preparation of a provincial EIA and a federal CSR for this combined petrochemical and LNG project. Managed a large consulting team and coordinated consultation with the public, stakeholders, and the regulatory agencies. Shawn also acted as panel lead at the 8-day provincial hearings that were part of the NS review process.

Fundy Tidal Energy Project, NB – Senior Technical Reviewer: Mr. Duncan provided senior technical input and senior review for the combined federal and provincial EA that was required as part of the Fundy Tidal Energy Project.

Environmental Assessment, NB DoT, Route #11, NB – Senior Reviewer: Mr. Duncan acted as the senior reviewer for a provincial EA for a new 4 lane highway in northern NB. This Project also included compliance with the federal CEA Act and required a number of natural resource surveys.

Federal Comprehensive Study Report, Hamilton Harbour Clean-up, ON – Project Manager: Mr. Duncan was the Project Manager and Senior Technical Reviewer for the federal CSR that was required as part of the Randle Reef Project in Hamilton Harbour.

Environmental Impact Assessment, 25 MW Windfarm, Canso, NS – Project Manager: Mr. Duncan conducted the environmental impact assessment for a windfarm and associated infrastructure. Components included public and regulatory consultation, environmental baseline field work, turbine site selection, and environmental impact assessment.

Joint Federal-Provincial Environmental Assessment (Comprehensive Study) for the Black Point Quarry Project, Erdene Resource Development Corp, NS – Project Director: Mr. Duncan was the Project Director responsible for senior review and client management for the environmental assessment project and EA scoping; scoping and coordination of field studies; regulatory and public consultation plans; and report preparation.

Environmental Impact Assessment, Power Generating Facilities, Barbados – Project Manager: Mr. Duncan was the Project Manager for the environmental impact assessment for a 250 MW power production facility and associated transmission line. Options that were considered for the facility fuel design included low-speed diesel engines and natural gas engines. Components included public and regulatory consultation, environmental baseline field work, and environmental impact assessment.

Environmental Assessment, Maritimes & Northeast Pipeline, Mainline Expansion, NS, NB – Project Manager: Mr. Duncan provided project management and development of the federal CEAA screenings for four compressor stations. This involved detailed site selection, field surveys and public, regulatory, and First Nations consultation programs.

Environmental Impact Assessment, Terminal and Pipeline Facilities, Barbados – Project Manager: Mr. Duncan prepared the EIA for a petroleum terminal facility and associated transmission pipelines. The existing bulk storage facilities were relocated from a coastal location in Oistins to a location near the airport. Components included public and regulatory consultation, environmental baseline field work, and pipeline route selection.

Environmental Impact Assessment, Windfarm, Barbados – Project Manager: Mr. Duncan conducted the Environmental Impact Assessment for a windfarm near Lamberts, Barbados. The project consisted of eleven 900 kW wind turbines. The EIA included public and regulatory consultation, environmental baseline field work, and environmental impact assessment.

Environmental Impact Assessment, Prison Facility, Barbados – Project Manager: Mr. Duncan prepared the Environmental Assessment for a new prison facility in Dodds, St. Philip. The previous prison was destroyed by fire and therefore there was an accelerated timeline to build a new facility to house the inmates. The EIA was completed ahead of schedule.

Environmental Impact Assessment, Natural Gas Pipeline Route, Country Harbour, Nova Scotia to St. Stephen, New Brunswick – Assessor: Mr. Duncan participated in the technical aspects of the corridor selection and environmental impact assessment of a 558 km pipeline, which included providing input on the definition of VECs, prediction of environmental effects, identification and analysis of design and route alternatives, socioeconomic impacts, contingency planning and compensation.

ENERGY RELATED EXPERIENCE:

Regulatory Support and Joint Public Review, Sable Offshore Energy and Maritimes & Northeast Pipeline – Technical Support: Mr. Duncan participated in, and provided environmental support to expert witness panel members testifying before a Joint Public Review Panel which included representatives of the National Energy Board.

Detailed Route Assessment and Hearings Maritimes & Northeast Pipeline – Technical Support: Mr. Duncan conducted a detailed analysis for the routing of the detailed 25 m easement for the mainline 30-inch pipeline. He also provided technical support for a detailed regulatory review of this easement through a NEB panel review process.

Environmental Protection Plan, Maritimes & Northeast Pipeline – Management/Technical Support: Mr. Duncan provided management and technical support for the development of an environmental protection plan for construction of 550 km of 30 inch natural gas transmission pipeline. Construction practices and protection measures were outlined in the EPP which would minimize potential impacts to the receiving environment.

Maritimes & Northeast Pipeline – Construction Supervisor: For the construction of the M&NP mainline and the Halifax lateral, Mr. Duncan fulfilled the role of construction supervisor. He provided supervision of a team of 20 environmental inspectors to oversee the implementation of environmental commitments and regulatory requirements during construction activities.

Duke Energy, Environment, Health and Safety Audit, Natural Gas Distribution and Processing Facilities, Fort Nelson, British Columbia, **and Northwestern Ontario – Lead Assessor:** Mr. Duncan conducted an EH&S compliance audit of distribution pipeline facilities in Ontario, and a gas processing facility in Fort Nelson. He verified compliance with applicable provincial and federal legislation and/or permits related to environmental and health and safety requirements for these types of facilities.

Comprehensive Study, Halifax Lateral, Maritimes & Northeast Pipeline – Management/Technical Reviewer: Mr. Duncan provided management support and technical review of a comprehensive EIA for the construction and operation of 120 km of 12 inch natural gas pipeline into Halifax. Shawn also acted as the construction supervisor to oversee the implementation of required environmental measures.

Pipeline Evaluation and Coastal Mapping, Orimulsion Pipeline, NB – Project Manager: Mr. Duncan was involved in the evaluation of an Orimulsion pipeline and the development of a coastal mapping for use in contingency and spill response planning for the transportation of Orimulsion. The Orimulsion was being transported to the NB Power generating station in Dalhousie New Brunswick.

ENVIRONMENTAL MANAGEMENT:

Sydney Tar Ponds Remediation – Project Director and Regulatory Manager: Mr. Duncan fulfilled these senior roles during the Detailed Design of the Sydney Tar Ponds Clean-up and for the ongoing Construction Administration and Oversight for this Project.

Inventory of Fish Processing Facilities, Environment Canada, Atlantic Provinces – Project Manager: Managed a project that compiled and evaluated data and information of fish processing facilities in the Maritimes with the intent to evaluate waste treatment procedures for these operations.

Acid Rock Mitigation and Construction Response Plan, Maritimes & Northeast Pipeline – Technical Support: Participated in the development and implementation of a unique approach to the handling of acid rock during the planning and construction of the pipeline. A construction response plan (CRP) was developed in conjunction with regulators that addressed the identification, handling, and disposal of acid rock encountered during construction. In addition, the CRP outlined mitigation and risk analysis procedures that were developed for treatment of acid rock to be left on-site.

Environmental Evaluation and Management, Canadian International Development Agency, India – Technical Support: Assisted CIDA and the government of India in identifying hazardous waste streams and developing treatment strategies.

Environmental Sensitivity Atlas, Baie de Chaleur, NB – Assessor: Collected environmental information for the Baie de Chaleur region and used it to produce environmental sensitivity mapping for the region to support spill response planning.

Inland Waters and Coastal Oceanographic Information Network, NB – Technical Support: Provided technical support for a project to develop and apply an environmental information system for the Bay of Fundy and Chaleur Bay regions. The system combines metafiles, a knowledge-based system and a geographical information system. It is used both for EIAs of proposed projects and contingency planning and to identify development opportunities.

Corporate EMS, Industrial Client – Project Manager: Developed and provided implementation guidance for a corporate environmental management system that closely followed the requirements as set out in the ISO 14001 CSA standard.

Environmental Performance Evaluation Training, India – Technical Support: Provided technical input and conducted training to environmental professionals in India to provide an overview of EPE and the requirements under the ISO 14031 CSA standard.

Wilderness Recreation Potential Assessment, Halifax, NS – Project Manager: Prepared an assessment of the potential for wilderness recreational use of a forest area that will be bisected by the proposed Highway #113.

AREAS OF SPECIALIZATION

- Project Management
- Environmental Assessment
- Ecological Assessment
- Habitat Assessment
- Regulatory Permitting, Monitoring, and Compliance Assessments
- Environmental Protection Plans
- Wetland/Watercourse Alterations
- Wetland and Fish Habitat Compensation

RELEVANT EXPERIENCE

Ms. Smith is the Vice President of Environmental Assessments and Approvals. She has a strong background in a variety of environmental program and policy areas. Ms. Smith has extensive experience leading teams, as well as building relationships and communicating with the public, regulators, the Mi'kmaq of Nova Scotia, clients, experts, and other stakeholders.

Prior to her appointment as Vice President of Environmental Assessments and Approvals at Strum, Ms. Smith held a Team Lead position with the Impact Assessment Agency of Canada. That role included the following:

EDUCATION

- MES, Dalhousie University, Halifax, NS (2004)
- BSc. (Honours), Environmental Science, Acadia University, Wolfville, NS (2001)

TRAINING

- GBA+ Micro-learning Series (2022)
- Cultural Safety (2021)
- Unconscious Bias (2021)
- Emergency First Aid (2021)
- Management Development Program (2019)
- Advanced Training, *Impact Assessment Act* (2019)
- Introduction to CEAA 2012 (November 2012)
- Water Management & Wetland Restoration Training Course, University of Guelph (2010)
- Screenings Under CEAA (2010)
- Aboriginal Relations Training (Ontario Ministry of the Environment) (2008)
- Negotiation and Mediation Training (Ontario Public Service) (2008)
- Orientation to CEAA (2007)
- Atlantic RBCA Applications (Dalhousie University)
 (2004)
- Management of Environmental Site Assessment (Dalhousie University) (2004)
- Led a team of professionals in completing federal environmental and impact assessments to support the Minister in decision making.
- Managed all aspects of assembling project teams, executing priorities, performance, deliverables, and overall quality.
- Supported the team in conducting Indigenous consultation, coordinating with federal and provincial departments, communicating with proponents, and engaging with stakeholders.
- Supported the team in the technical review of regulatory submissions under the Canadian Environmental Assessment Act, 2022 and the Impact Assessment Act.
- Advised senior Agency officials on complex regulatory considerations.

Ms. Smith also held multiple roles with Nova Scotia Environment which included the following responsibilities:

- Led the development, management, and implementation of the Risk-Based Audit Project. The purpose of this
 corporate priority project was to modernize inspection services by using risk to maximize the allocation of
 limited resources while fulfilling the Department's mandate.
- Conducted extensive cross-sector collaboration within the Department, including all regions, inspectorates, divisions, and staff levels to ensure the project met the needs of working level staff and the goals of senior management.
- Provided strategic policy support and analysis for departmental programs and policies using the Regulatory Management Process.
- Conducted focus group sessions, coordinated stakeholder consultation, and provided recommendations to senior management.
- Completed inspections, responded to complaints, reviewed applications, and generated approvals related to the protection and sustainable use of air, land, and water resources in NS.

At Strum, Ms. Smith previously held progressive management roles including acting as the Team Lead during a longterm secondment of a senior manager and managed all aspects of a variety of projects within the Environment Group, including environmental assessments, watercourse alteration applications, wetland alteration applications, wetland compensation, environmental protection plans, environmental monitoring, and ecological assessments. This also included successfully and simultaneously managing multiple provincial Environmental Assessments. Ms. Smith also has extensive experience creating budgets, schedules, staff resourcing and supervision, deliverables, and client communication. She has presented at public open houses, community liaison committee meetings, public hearings, and testified at a UARB hearing.

REPRESENTATIVE PROJECTS AND ROLES

Strum Consulting (current)

Wind Power Environmental Assessments, 2022-2023 – Project Manager/Team Lead: Providing senior review and management on several 100 MW+ wind farms in Nova Scotia.

Impact Assessment Agency

Boat Harbour Remediation Project, 2018-2022 – **Team Lead:** Team Lead for the Agency's technical review of this project, as well as associated consultation with the Mi'kmaq of Nova Scotia and public engagement. This project conducted the Agency's first external technical review as part of the process.

Beaver Dam Mine Project, Fifteen Mile Stream Project, **2017-2022**–**Team Lead**: Team Lead for the Agency's technical review of these gold mining projects, as well as associated consultation with the Mi'kmaq of Nova Scotia and public engagement.

Canso Space Port, Northern Pulp Replacement Effluent Treatment System, Touquoy Mine Expansion, Goldboro Gold Mine, 2017-2021 – **Team Lead:** Team Lead for requests to the Minister for these projects to be subject to the *Impact Assessment Act.* Review and analysis involved input from federal departments and a decision package to the Minister.

Howse Property Iron Mine Project, 2018– Team Lead: Team Lead for the Minister's decision package for the Howse Property Iron Mine.

Strum Consulting (past)

Wind Power Environmental Assessments, 2011-2014 – Project Manager/Team Lead: Project managed and coordinated all aspects of the provincial EA process for seven wind power projects ranging in size from 4 MW to 10 MW. Project components included wetlands, watercourses, wildlife, avifauna, bats, sound, shadow flicker, visual aesthetics, socio-economic conditions, and effects assessment. Also highly involved in public engagement activities including participation at several municipal planning meetings and project open houses, as well as the preparation of presentation materials (e.g. posters, handouts, etc.).

South Canoe Wind Project, **2011-2013 – Project Manager/Team Lead:** Project managed and coordinated the completion of numerous desktop and field studies in support of a 100 MW wind power project. Studies included exclusion mapping; a desktop review of site habitat, species at risk (including flora, fauna, and avian species), and archaeological resources; a sound and shadow flicker assessment; a visual impact assessment; and field assessment for wetlands, watercourses, wildlife, and avian species. Managed the launch of the project website and completed the effects assessment for the biophysical components of the provincial environmental assessment registration document. Also developed presentation materials for and attended three public open houses and delivered multiple technical presentations to the Community Liaison Committee and as part of the Development Agreement Public Hearing process.

CEAA Screening, Hansen Bridge Replacement, 2012 – Project Manager: Project managed field assessments (stream assessment, archaeological surveys, and habitat characterization), desktop review, and effects assessments for a bridge replacement project under CEAA. Consulted with Nova Scotia Environment, Transport Canada (TC), and DFO to ensure all regulatory requirements were met.

AREAS OF SPECIALIZATION

- Project Management
- Environmental Assessment
- Technical Program Development
- Wetland and Watercourse Alteration Permitting
- HADD Projects and DFO Authorizations

RELEVANT EXPERIENCE

Mr. Dickey is the Manager of Environmental Sciences at Strum where he oversees the company's Environmental Science Group in conducting environmental assessments, research, and field assessment programs, as well as wetland and watercourse permitting projects.

Mr. Dickey joined the Strum team in 2012. He received his Masters of Resource and Environmental Management degree from Dalhousie University that same year. While studying at Dalhousie, Scott specialized in environmental

EDUCATION

- Masters of Resource and Environmental Management (MREM) - Dalhousie University, Halifax, NS (2012)
- Bachelor of Science (Honours in Biology) -Mount Saint Vincent University, Halifax, NS (2009)

TRAINING

- First Aid & CPR Level A St. John's Ambulance (2021)
- WHMIS Certification Construction Safety Association of Nova Scotia (2018)
- Project Management for Environmental Professionals - Eco Canada (2013)
- Risk Communication and Conflict Resolution Training - Eco Canada (2013)
- Over 80 Hours of Project Management Coursework - Dalhousie University's Faculty of Management (2010 -2011)

assessment, project management, regulatory compliance management, and natural resource management. Scott also obtained a Bachelor of Science degree with Honours from Mount Saint Vincent University in 2009.

Scott is active in managing consulting projects, conducting environmental assessments, overseeing wetland and watercourse alteration applications, and Fisheries and Oceans Canada (DFO) authorizations. He is knowledgeable with provincial and federal approvals processes, as well as best industry practices for assessment and data collecting protocols. Scott is also a technical specialist in a number of specialized areas such as acoustic assessments and compliance consulting, avian radar assessments, environmental ecology, and environmental geomatics systems.

REPRESENTATIVE PROJECTS AND ROLES

Various Wind Power Projects, NS, 2020-Present, Environmental Scientist – Coordinated and led the environmental assessment of several large (> 50 MW) wind power projects. This included the development of new services such as avian radar assessments, the coordination of several environmental research and assessment programs, regulatory consultation, and the coordination of the data analysis and technical reporting programs.

L8005 Transmission Line Project, NS, 2020-2022, Environmental Scientist – Managed and conducted several component studies as part of this transmission line project's environmental assessment, including an avifauna interaction study, wetland, watercourse and rare plant studies, and a Mainland Moose study.

Chaswood Wetland Compensation Project, NS, 2020-2022, Environmental Scientist – Identified, concepted, and developed a wetland expansion and enhancement project located near Chaswood, NS.

Melford Atlantic Gateway Terminal Project, NS, 2016-2022, Environmental Scientist – Managed and conducted several component studies, permitting programs, and prepared environmental management plans for this marine terminal project. This included conducting a wetland and watercourse assessment and obtaining alteration approvals for several dozen hydraulic features; preparing environmental management plans for the Project's construction and operation; and consulting with regulators and other stakeholders on the Project's regulatory requirement.

Boat Harbor Remediation Project, NS, 2021, Environmental Scientist – Researched, designed, and installed mitigations to improve water quality and reduce fish mortalities at the Boat Harbor remediation site.

Aulds Cove Avian Assessment, NS, 2015 to 2019, Environmental Scientist – Completed pre- and postconstruction avian studies and developed a risk model for the transmission line project which is located in a migratory bird flyway.

Canso Spaceport Environmental Assessment, NS, 2018, Environmental Scientist – Completed ecological assessments including avian assessments, bat assessment, flora and fauna assessments, and wetland and freshwater habitat assessments as part of the Project's Environmental Assessment.

Windsor Forks Wetland Compensation Project, NS, 2014-2018, Environmental Scientist – Contributed to the design and construction of a wetland creation project in which a wetland was created in the site of a quarry near Windsor, NS.

Various Wind Power Project, NS, 2012-2018, Environmental Scientist – Completed environmental assessments, wetland assessments, flora and fauna surveys, avian assessments, and post-construction bird and bat monitoring programs. Projects include, the CBU Wind Power Project, the North Beaverbank Community Wind Project, the Nine Mile River Community Wind Project, the Pockwock Community Wind Project, the Truro Heights / Millbrook Community Wind Project, and the Whynotts Community Wind Project.

South Canoe Wind Project, NS, 2012-2018, Environmental Scientist – Completed wetland assessments, flora and fauna surveys, ambient sound assessments, wind turbine sound warranty test, and assisted in geotechnical assessments.

Canso Causeway Avian Study, NS, 2014-2016, Environmental Scientist – Completed avian studies over several years and developed risk analysis framework and mortality prediction model.

South Canoe Wetland Compensation Research Project, NS, 2014-2016, Environmental Scientist – Completed a comprehensive research project as partial fulfillment of the wetland compensation requirement for the South Canoe Wind Project's wetland alteration. This included a comprehensive assessment and monitoring program of a number of reference wetland sites in Nova Scotia, as well as GIS analysis, vegetation, soil and hydrology data analysis, and reporting for the Project.

Maritime Link Transmission Line Watercourse Assessment, NS, 2013- 2014, Environmental Scientist – The scope of this project included the design and coordination of desktop and field programs to assess watercourse crossings and fish habitat along the footprint of transmission and grounding lines for the purpose of construction planning and permitting. This involved the identification and assessment of watercourses within the 90 km (combined) transmission and grounding line corridors in Cape Breton, as well as all associated site facilities and access roads. Responsible for completing field assessments including fish habitat and fish population assessment, preparation and maintenance of field data, and general communications.

Trenton Generating Station, Benthic and Mixing Zone Studies, NS, 2013, Environmental Scientist – An ecological assessment was completed to evaluate ecosystems in three water bodies, which receive effluents from the Trenton Generating Station's ash management facilities. The assessment incorporated an evaluation of benthic community composition (*i.e.*, benthic macro-invertebrates and macrophytes), as well as a characterization of habitat in the receiving waters. The ecological assessment was completed simultaneously with a mixing zone study, which was designed to provide guidance on determining effluent discharge limits outlined in the Operating Approval for the Trenton Generating Station, by determining concentrations of compliance parameters in the mixing zones of receiving effluent waters. Involved in all aspects of the Project including study design, the coordination and completion of the field programs, water quality sampling and sample management, data management, and reporting.

AREAS OF SPECIALIZATION

- Field Program Design and Logistics Coordination
- Environmental Assessment
- Wetland Delineation and Functional Assessment
- Watercourse and Wetland Alteration Permitting
- Marine near-shore and Water Quality Monitoring
- Avian Studies
- Regulatory and Public Consultation

RELEVANT EXPERIENCE

Mr. Doane joined the Strum team in 2020 as an Environmental Intern, while working towards his Master of Resource and Environmental Management degree at Dalhousie. While studying at Dalhousie, Angus specialized in natural resource management in Nova Scotia, especially in the coastal zone. Angus obtained his Bachelor of Science degree in 2019 from Mount Allison University, where he specialized in Environmental Chemistry and Microbiology. He completed his honours thesis in organic and inorganic synthesis of maltol-derived thiopyridinone ligands for various environmental and anti-bacterial applications. To complement the lab-based skills associated with research, Angus has experience in field-based

EDUCATION

- Master of Resource and Environmental Management (MREM) - Dalhousie University, Halifax, NS (2021)
- Bachelor of Science (Honours in Chemistry) - Mount Allison University, Sackville, NB (2019)

TRAINING

- Wetland Ecosystem Service Protocol Atlantic Canada (WESP-AC) – Maritime College of Forest Technology (2021)
- Wetland Delineation Training Maritime College of Forest Technology (2020)
- Small Vessel Operator Proficiency "SVOP" and Marine Emergency Duties "MED A3" - Survival Systems Training Limited (2017)
- Wilderness First Aid St. John's Ambulance (2022)
- Backpack Electrofishing Canadian Rivers Institute (2021)
- VHF Radio Restricted Operators Certificate – Industry Canada (2017)

collection and preparation of environmental samples from his academic studies.

Mr. Doane is active in conducting environmental assessments, wetland functional assessments, delineations, and compensation projects, completing radar, avian, wetland, watercourse, flora, lichen, and wildlife surveys, and other ecological studies. He has planned and coordinated multi-team fieldwork across large projects in remote locations throughout Nova Scotia. Away from the field, he is knowledgeable with Provincial and Federal approvals and permitting processes and works closely with senior staff to prepare reports and regulatory submissions, as well as prepare materials for, and participate in, public and regulator consultation components for Environmental Assessments. He complements freshwater and marine survey work with deckhand and operator experience in near-shore marine survey projects. Mr. Doane also serves on the Joint Occupational Health and Safety committee as an environmental science team representative. Also, Angus is experienced in working with multi-disciplinary teams through the Dalhousie Faculty of Management, in the Management Without Borders and Tri-Course class-structures, beyond his time with Strum.

Mr. Doane held a previous position with Environment and Climate Change Canada (ECCC) as a water quality technician. He conducted water sampling in many bays, harbours, and estuaries around Nova Scotia from Pubnico to Cape North, dealing with all matters of leading a field crew on a day-to-day basis. This included trailering, launch and recover practices, regular boat, motor, trailer and vehicle maintenance, as well as training and aiding new staff in acclimating to the work. Processing of samples was also completed on a daily basis using the modified A1 method in a level 3 CALA certified microbiology lab.

REPRESENTATIVE PROJECTS AND ROLES

Various Wind Farm Project Environmental Assessments, NS – Environmental Scientist/Field Coordinator:

- Goose Harbour Lake Wind Farm Project, NS, (2021 Present)
- Mersey River Wind Farm Project, NS, (2021 Present)
- Weavers Mountain Wind Farm Project, NS, (2021 Present)
- Ellershouse Wind Farm Project, NS, (2021 Present)
- Apitamkiejit Windfarm, NS, (2021 2022)
- Blueberry Acres Windfarm, NS, (2021 2022)
- Panuke Lake Wind Farm, NS, (2021 2022)
- Melvin Lake Wind Farm Project, NS (2021 Present)
- Sandy Point Wind Farm Project, NS (2021 2022)
- Higgins Mountain Wind Farm Project, NS, (2020 Present)

Coordinated and completed all aspects of field surveys for Environmental Assessments, including wetland, watercourse, fish & fish habitat, avian, avian radar, bat, wildlife, flora, and lichen surveys. Prepared, reviewed, and organized field data using several methods of collection. Prepared materials for and participated in public consultation meetings, as well as aiding in the preparation of materials for public outreach. Led regulatory meetings to brief provincial and federal agencies on project activities. Prepared EA related documents, including methodologies, effects assessments, and desktop reviews.

Avian Radar Studies for Wind Development, NL, 2022 – Present - Environmental Scientist – Aided in the design and construction of avian radar monitoring systems for 4-season deployment in harsh coastal and inland environments in Newfoundland, including siting and remote monitoring.

Ruth Falls Hydroelectric Monitoring, NS, 2021-Present - Project Coordinator/Environmental Scientist: Completed Swallow nesting/monitoring surveys during the fall 2021 migration period. Designed, coordinated, and conducted a wetland and wetland fish & fish habitat monitoring program considering wetland fish habitat functions.

Melford Atlantic Gateway Terminal Project, NS, 2020-Present – Environmental Scientist: Completed comprehensive research as partial fulfillment of the wetland compensation requirement for the Melford Terminal's wetland alteration. This has included a comprehensive search of potential sites across Antigonish and Guysborough counties based on the precedence of other wetland compensation projects, as well as aiding in the design and implementation of the engineered wetlands to be created. Supported regulatory consultation for watercourse alteration applications and impacts to fish and fish habitat, especially salmonid species.

L8001 and L8005 Transmission Line Project, NS, 2020-2022 – Environmental Scientist/Field Coordinator: Planned, coordinated and completed Wetland and watercourse assessments, wildlife surveys, and rare plant and lichen surveys, along the linear corridor spanning 100 km from the NS/NB border to Onslow, NS. These surveys involved preparing desktop and safety tools for field staff, as well as preparing reports respective to each of the surveys.

Boat Harbor Remediation Project, NS, 2021, Environmental Scientist – Monitored water quality through seasonal tide cycles, before aiding in the research and installation of mitigations to improve water quality and reduce fish mortalities at the Boat Harbor remediation site.

GWRR Watercourse Alteration Approval and Fish Surveys, NS, 2021 – Environmental Scientist: Conducted electrofishing / fish salvage for an emergency watercourse alteration along a section of railway. This involved the capture, identification, documentation, and release of fish from the impacted section of the watercourse. Conducted further watercourse assessments to aid in the alteration approval process.

Canadian Shellfish Sanitation Plan – Shellfish Water Classification Program, NS, 2017-2019 – Water Quality Technician: Completed three summers of fecal coliform testing of coastal waters around the province of Nova Scotia to aid in the classification of areas for shellfish harvesting. This involved extensive travel, sample collection, processing and overall upkeep of field equipment across a fleet of boats, vehicles, and associated gear. Lab and sample processing work included QA and QC procedures, sample reading, media production, waste management, and sample inoculation.

AREAS OF SPECIALIZATION

- Environmental Reporting and Permitting
- Wetland and Watercourse Assessment
- Wildlife Surveying and Assessment
- Remediation and Reclamation
- Environmental Emergency Response
- Dangerous Goods Assessment

RELEVANT EXPERIENCE

Miss Eichinger first joined the Strum team in 2020 as an Environmental Intern, while working towards her Masters of Resource and Environmental Management degree at Dalhousie. While studying at Dalhousie, Lyndsay specialized in remediation, environmental assessment, and natural resource management in Nova Scotia. Lyndsay also obtained her Bachelor of Science degree in 2019 from the University of British Columbia where she specialized in Earth and Environmental Science with a minor in Economics.

EDUCATION

- Masters of Resource and Environmental Management (MREM) - Dalhousie University, Halifax, NS (2021)
- Bachelor of Science University of British Columbia (2019

TRAINING

- ATV Certification (2022)
- RPAS Pilot Certification (2022)
- BICO Search and Rescue Program (2022)
- Electrofishing Certification (2021)
- Standard First Aid and WHMIS (2021)
- Stream Gauging Training from UBC (2019).
- Environmental Impact Assessment Certificate received from the Centre for Environmental Assessment Research at UBC (2019).
- Derailment Response CP Railway (2018)
- Railway Safety Training (2018) Transportation of Dangerous Goods (2018)

During her graduate studies, Lyndsay conducted a desktop study on the Boat Harbor Remediation Project, producing a technical review paper evaluating the cost-effectiveness of the different remedial components and technologies considered by the project. This paper has since been published in the journal Remediation titled: Review of remedial options for the Boat Harbour remediation project in Nova Scotia, Canada.

Lyndsay is active in conducting environmental assessments, wetland delineations, watercourse assessments, bat surveys, and other ecological studies. She has conducted significant fieldwork across large projects in remote locations. She is knowledgeable with provincial and federal regulations, working closely with senior staff preparing reports and regulatory submissions. Lyndsay is experienced working with multi-disciplinary teams through the Dalhousie Faculty of Management, in the Management Without Borders and Tri-Course class-structures, beyond her time with Strum.

Lyndsay held a previous position with RAM Environmental Response as a HAZMAT Responder based in the BC interior. Her role was fast-paced and multidisciplinary, working in tandem with senior management on emergency response planning and remediation teams on site. Lyndsay has responded to an array of emergency situations involving dangerous goods, such as train derailments and fuel spills, all requiring coordination between clients, contractors, first responders, and government parties. She has a strong background in safety protocols, erosion control implementation, response tactics, and emergency remediation measures for a variety of contaminants. Lyndsay is well practiced in remote travel along with ATV, snowmobile, and 4x4 use.

REPRESENTATIVE PROJECTS AND ROLES

Environmental Assessment Registration and Environmental Protection Plan, NL, 2022 – Junior Environmental **Professional**: Completed reporting requirements for the submission of an EA Registration Document and associated Environmental Protection Plan for a transmission line decommissioning project located in Newfoundland and Labrador.

Ellershouse Wind Farm Environmental Risk Assessment, NS, 2022 – Junior Environmental Professional: Conducted a desktop study to characterize environmental risk, mitigation, and management measures for a wind farm located in Ellershouse, NS. This report was then used to inform constraints analysis and Project design features.

Windsor Forks Wetland Compensation Project, NS, 2021-2022 – Junior Environmental Professional: Completed reporting requirements for the final year of wetland monitoring and assessment for a constructed wetland.

Weavers Mountain Wind Farm Moose Tracking Surveys, NS, 2022 – Junior Environmental Professional: Participated in field assessments for winter wildlife, with a focus on mainland moose and other species at risk. This involved walking predetermined transects through various habitats to identify and document evidence of wildlife such as tracks, scat, and browsing.

GWRR Watercourse Alteration Approval and Fish Surveys, NS, 2021 – Junior Environmental Professional: Conducted electrofishing / fish salvage for an emergency watercourse alteration along a section of railway. This involved the capture, identification, documentation, and release of fish from the impacted section of the watercourse.

Mahone Bay Well Installation and Monitoring, NS, 2021 – Junior Environmental Professional: Groundwater well installs were completed at a construction site in Mahone Bay, NS along with vegetation transects to characterize the sites environmental features.

Pirate Harbour Wind Farm Project, NS) 2021-Present – Junior Environmental Professional: Participated in field assessments and Environmental Assessment report writing for a wind farm located in NS. Field surveys were conducted for wildlife, birds, wetlands, and watercourses. Environmental Assessment related documents such as field survey assessments, consultation, and background research were also completed.

Mersey Wind Farm Project, NS, 2021 – Junior Environmental Professional: Participated in field assessments and Environmental Assessment report writing for a wind farm located in NS. Field surveys were conducted for wildlife, birds, wetlands, and watercourses. Environmental Assessment related documents such as field survey assessments, consultation, and background research were also completed.

Melford Atlantic Gateway Project, NS, 2020-Present – Junior Environmental Professional: Completed various reporting and background research requirements such as consultation documents, engagement record keeping, and the development of a wetland compensation plan.

Higgins Mountain Wind Farm Project, NS, 2020-Present – Environmental Technician: Conducted watercourse, wetland, fish/fish habitat, wildlife and avian assessments all contributing to the environmental assessment for the establishment of a windfarm. Involved in Environmental Assessment development, planning, and finalization.

L8001 and L8005 Transmission Line, NS, 2020 – Environmental Technician: Participated in wetland and watercourse assessments, Wildlife surveys, and rare plant and lichen surveys, along the linear corridor spanning 100kms from the NS/NB border to Onslow, NS.

Shellfish Harvesting and the Persistent Threat of Sewage Pollution, NS, 2020 – MREM Tri-course project: Working in a multi-disciplinary team to assess the threat of sewage pollution on the shellfish industry of Nova Scotia, including the biophysical, socio-political, law and policy aspects of the greater issue of pollution in the near shore environment. This involved research into government programs, policies and regulations, as well as different stakeholders in the industry.

AREAS OF SPECIALIZATION

- Wetland and Watercourse Assessment
- Wetland Delineation & Functional Assessment
- Wildlife Surveying and Assessment
- Environmental Reporting and Permitting
- Baseline Study Data Collection & Interpretation

RELEVANT EXPERIENCE

Mr. Kavanagh joined Strum in 2022, having just completed a master's degree in Resource and Environmental Management at Dalhousie University. While studying at Dalhousie University, Mr. Kavanagh specialized in freshwater resource management, wetland alteration/compensation, and stormwater management. He also obtained his diploma of engineering in 2016 and Bachelor of Science degree in 2018, from Saint Mary's University. While there, he completed an honours thesis focused on enhancing the effectiveness of wind power

EDUCATION

- Master of Resource and Environmental Management (MREM) - Dalhousie University, Halifax, NS (2022)
- Bachelor of Science (Honours in Environmental Science) - Saint Mary's University, Halifax, NS (2018)
- Diploma of Engineering Saint Mary's University, Halifax, NS (2016)

TRAINING

- Wetland Ecosystem Services Protocol Atlantic Canada (WESP-AC) Training – Maritime College of Forest Technology (2022)
- Wetland Delineation Training Maritime College of Forest Technology (2022)
- Backpack Electrofishing Canadian Rivers Institute (2022)
- Wilderness First Aid Saint John Ambulance (2022)

source assessment, responding to the need of having a measure of the relationship of wind speed and its consistency.

Throughout his academic career, Mr. Kavanagh has had the opportunity to partake in a number of research initiatives, including collecting and processing water chemistry data, the remediation of trampled pollinator habitat, an assessment of the carbon sequestration capabilities of species mixes within the boreal forest, and an evaluation of the acid rock drainage potential within the watersheds of Nova Scotia. Further, for the final project of his graduate studies, Darcy assessed the climate resiliency of wetland compensation projects within the province of Nova Scotia, providing a series of research-backed recommendations to continue working towards the provincial goal of no net loss of wetland structure and function, while also ensuring a net gain of climate resiliency.

Mr. Kavanagh has proven critical thinking and problem-solving skills through collaboration with multiple real-world organizations. This includes a partnership with the Atlantic First Nations Water Authority to analyze the biophysical, socio-political, and law & policy related dimensions associated with the self-determination of water resources in First Nations communities, as well as aiding the District of Argyle in their efforts to mitigate their localized mosquito problem through a series of research tactics including a literature review, policy review, jurisdictional scan, and feasibility analysis. For the internship portion of his graduate degree, Mr. Kavanagh worked with a consulting company where he was involved with various tasks including soil, sediment, and surface water sampling, wetland delineation, electrofishing, watercourse assessment, and air quality monitoring.

Mr. Kavanagh is active in conducting numerous field surveys to fulfill baseline studies, environmental permits, and conditions of approval, as well as any relative complementary desktop research. Further, Mr. Kavanagh is well practiced in working in remote areas, along with ATV, snowmobile, and 4x4 use.

REPRESENTATIVE PROJECTS AND ROLES

Various Wind Farm Project Environmental Assessments, NS – Environmental Scientist:

- Goose Harbour Lake Wind Farm Project, NS, (2022 Present)
- Mersey River Wind Farm Project, NS, (2022 Present)
- Weavers Mountain Wind Farm Project, NS, (2022 Present)
- Higgins Mountain Wind Farm Project, NS, (2022 Present)
- Ellershouse Wind Farm Project, NS, (2022 Present)

Responsible for conducting field assessments and Environmental Assessment report writing for multiple prospective wind farm locations in NS. Field surveys were conducted for terrestrial flora & fauna, herpetofauna, avifauna, fish & fish habitat, wetlands, and watercourses. Other methods of data collection included snowshoe expeditions, ATV driving, and trial camera, acoustic monitor, and ultrasonic monitor deployment. Environmental Assessment documentation included field data compilation and interpretation to inform effects assessments, mitigation measures, and monitoring strategies.

Ruth Falls Wetland Monitoring, NS (2022 – Present) – Environmental Scientist: Responsible for conducting field assessments and report writing for a wetland and wetland fish & fish habitat monitoring program to be completed 2022 – 2027 to facilitate the dewatering of the reservoir necessary for capital upgrades. Field assessments included wetland delineation & functional assessment, monitor well installment, vegetation plot monitoring, and in-situ water chemistry sampling.

Nesting Bird Searches, NS (2022 – Present) – Environmental Scientist: Surveyed prospective project areas for the presence of nesting birds. Collected field data related to any observed species and reported on the findings. Flagged buffer areas for any identified species.

Wetland Delineation and Permitting, NS (2021 – Present) – Environmental Scientist: Completed wetland delineation, functional assessments, and permitting submissions at numerous sites around Nova Scotia. Projects include pre-construction and post-construction monitoring, compensation planning, contingency planning, and erosion and sedimentation control planning.

L8001 and L8005 Transmission Line, NS (2022) – Environmental Scientist: Participated in wetland and watercourse assessments, wildlife surveys, and rare plant and lichen surveys along the linear corridor spanning 100 km from the NS/NB border to Onslow, NS.

Goldboro Liquified Natural Gas (LNG) Project, NS (2021) – Environmental Scientist: Undertook soil and water sampling, stream flow monitoring, and avian surveys to satisfy conditions for environmental permits and approvals for the construction of an LNG facility. Soil samples were taken along the perimeter of the study area in order to delineate the presence of contaminants associated with historic gold mining. Water samples were analyzed in a lab for parameters including total & dissolved metals, dissolved organic carbon, and total suspended solids. Surveys included MBBA-style early morning passerine surveys, nighttime nocturnal surveys following the *Nova Scotia Nocturnal Owl Survey* sampling methodology, as well as circumnavigating multiple waterbodies and conducting waterfowl nest surveys. Other tasks included the periodic maintenance and data extraction of both acoustic avian monitors and ultrasonic bat monitors.

Highway 102 Aerotech Connector Road Project, NS (2021) – Environmental Scientist: Responsible for conducting field surveys and aiding in the reporting for birds and bats to inform science-based decision making within the project laydown area. Surveys included acoustic monitoring, point-count surveys. and nighttime nocturnal surveys. Other tasks included the periodic maintenance and data extraction of ultrasonic bat monitors, as well as aiding in the development of a wildlife crossing plan to mitigate wildlife-vehicle collisions.

Goldenville Historic Mine Remediation Project, NS (2021) – Environmental Scientist: Flow monitoring was conducted at eight locations within and around the Goldenville Gold Mine site in tandem with a surface water sampling program. A total of eight transducers were submerged (one per sample site), along with an additional datalogger nearby to measure air pressure. A discharge transect was also completed for each sample site using a handheld flow meter. Surface water samples were analyzed in a lab for parameters including total & dissolved metals, dissolved organic carbon, and total suspended solids. This program was conducted as part of an ecological risk assessment for the remediation of the contaminated tailings area.

Touquoy Gold Mine DustTrak Air Monitoring Program, NS (2021) – Environmental Scientist: Responsible for conducting direct-read real time sampling in response to periodic elevated dust levels at the Touquoy Gold Mine Site, in order to better understand the reasons for the elevated dust levels. TSI DustTrak instruments were used to strategically perform monitoring upwind and downwind of known areas of concern. During the monitoring, record was taken of any mining activities occurring, localized weather conditions, and any other potential dust sources in the area. This program was useful for providing a relative comparison of on-site dust levels, offering a good indication of whether compliance with the IA could be achieved.

AREAS OF SPECIALIZATION

- Wetland and Watercourse Assessment
- Wildlife Surveying and Assessment
- Ecological Forestry and Agriculture
- Benthic Invertebrate Analysis

RELEVANT EXPERIENCE

Ms. Schultz joined the Strum team in 2022 as an Environmental Scientist upon completing her coursework for her Masters of Resource and Environmental Management degree at Dalhousie. While studying at Dalhousie, Ms. Schultz specialized in a number of different areas of natural resource management in Nova Scotia, such as forestry, agriculture, and wetlands. She obtained her Bachelor of Science degree in 2019 from the University of Manitoba in the department of biological sciences where she specialized in ecology and environmental sciences. Her honours thesis focused on the ecological application of double-stranded

EDUCATION

- Masters of Resource and Environmental Management (MREM) - Dalhousie University, Halifax, NS (2022)
- Bachelor of Science (Hons.) University of Manitoba, Winnipeg, MB (2019)

TRAINING

- Wetland Ecosystem Services Protocol for Atlantic Canada Training – Maritime College of Forest Technology (2022)
- Wetland Delineation Training Maritime College of Forest Technology (2022)
- Backpack Electrofishing Canadian Rivers Institute (2022)
- Pilot Certificate for Small Remotely Piloted Aircraft System (RPAS), Visual line-of-sight (VLOS) – Transport Canada (2022)
- Wilderness First Aid and CPR "C" St. John's Ambulance (2022)

RNA-based pesticides to control flea beetles in canola cropping systems in Manitoba. This project incorporated both field-based sample collection and lab-based sample preparation using techniques in molecular biology.

During her graduate studies, Ms. Schultz worked on a number of large projects, collaborating with multidisciplinary teams to contribute to local issues. As her final MREM Research Project, she produced GIS and statistics-based recommendations for Nova Scotia Natural Resources and Renewables regarding identification of old-growth forest locations in the province. Through the Dalhousie Faculty of Management's 'Management Without Borders' course, Ms. Schultz helped develop recommendations for pest control in the Municipality of the District of Argyle. She also developed an understory vegetation sampling protocol to be used in the Acadia Research Forest by the Canadian Forestry Service.

Ms. Schultz's most recent work experience includes contributing to a research project on bat activity hosted by a global non-profit organization by conducting statistical analysis on acoustic data. Ms. Schultz held a previous position with Nova Scotia Department of Lands and Forestry as a summer intern while completing her graduate studies. This role required remote field work to carry out the provincial old-growth scoring protocol, and desktop GIS-based work to plan and navigate to study locations. Prior to this internship, Ms. Schultz held a position with Agriculture and Agri-Foods Canada as a Junior Policy Analyst. In this role, she focused on the development of the Clean Fuel Standard, which included significant correspondence with agricultural stakeholders and a major deliverable of a jurisdictional scan of clean fuel regulations across the world.

Ms. Schultz is active in conducting ecological studies to contribute to a variety of environmental assessments. She has conducted significant fieldwork across large projects in remote locations, in both Nova Scotia and Manitoba. She is knowledgeable with provincial and federal regulations, working closely with senior staff preparing reports and regulatory submissions.

REPRESENTATIVE PROJECTS AND ROLES

Environmental Effects Monitoring Program, Halifax International Airport Authority, NS, 2022-Present – Environmental Scientist: Conducting preliminary research, planning, field work, data composition, and reporting for benthic macroinvertebrate monitoring plan following CABIN protocol.

Environmental Assessment, Higgins Mountain Wind Farm, NS, 2022-Present – Environmental Scientist: Reporting on terrestrial habitat and flora at the Project site in support of an in-progress Environmental Assessment.

Environmental Assessment, Weavers Mountain Wind Farm, NS, 2022-Present – Environmental Scientist: Collecting winter and spring wildlife data and wetland and watercourse data, and reporting on various field programs for an Environmental Screening Report and in-progress Environment Assessment.

Environmental Assessment, Mersey River Wind Farm, NS, 2022-Present – Environmental Scientist: Collecting winter and spring wildlife data and wetland and watercourse data, and reporting on various field programs for an inprogress Environment Assessment.

Environmental Assessment, Goose Harbour Lake Wind Farm, NS, 2022-Present – Environmental Scientist: Collecting winter and spring wildlife data and wetland and watercourse data, and reporting on various field programs for an in-progress Environment Assessment.

Environmental Assessment, Melvin Lake, NS, 2022-Present – Environmental Scientist: Collecting winter and spring wildlife data.

Environmental Study, Apitamkiejit Wind Farm, NS, 2022 – Environmental Scientist: Reporting on winter wildlife tracking and winter avian surveys for an Environmental Screening Report.

Environmental Assessment, Blueberry Acres Wind Farm, NS, 2022 – Environmental Scientist: Reporting on winter wildlife tracking and fall and winter avian surveys for an Environmental Screening Report.

Environmental Assessment, Red Spruce Wind Farm, NS, 2022 – Environmental Scientist: Reporting on fall migration avian surveys for an Environmental Screening Report.

Environmental Study, L8005 Transmission Line, NS, 2022 – **Environmental Scientist:** Collecting winter wildlife data, reviewing a summary report of winter field work, and preparing a proposal for an old-growth forest assessment within the transmission line right-of-way.

Environmental Assessment, Ross Bay Junction, NF, 2022 – **Environmental Scientist:** Identifying previously collected benthic macroinvertebrate samples and preparing a report and data summary on the diversity and abundance of species present on the Project site.

PROFESSIONAL ASSOCIATIONS

 Association of Professional Engineers of Nova Scotia (Engineer-in-Training)

AREAS OF SPECIALIZATION

- Industrial Approvals
- Environmental Approvals
- Computer-Aided Design
- Hydrogeology
- Water Treatment
- Climate Change

RELEVANT EXPERIENCE

EDUCATION

- Bachelor of Engineering (Environmental), Dalhousie University, Halifax, NS (2020)
- Civil/Mining Technician, Collège Boréal, Sudbury, ON (2010)

TRAINING

- Standard First Aid & CPR
- Excavation and Trenching
- Confined Spaces

Frank Gascon is an Engineer-in-Training with a Bachelor's Degree in Environmental Engineering from Dalhousie University in Halifax, NS. Since his employment with Strum, he has been involved in project management, engineering design, environmental monitoring, groundwater assessments, hazard assessments, environmental assessments, project reporting, and regulatory compliance.

Frank has worked directly with the Mechanical Engineering group to design solid waste transfer stations, waste audits, long-term monitoring and regulatory permitting for large Solid Waste and Waste to Energy Facilities. Similarly, he has worked with the Industrial Approvals and Permitting group on various Industrial Approval applications across multiple industries; and is well-versed in the development of Environmental Management Plans. Additionally, he has gained valuable experience from Strum's Senior Hydrogeologist, concerning groundwater assessments for potable groundwater supply development, evaluation and treatment of water quality issues, and review of factors that contribute to the degradation of groundwater resources at residential sites.

Before working with Strum, Frank researched the management and disposal of municipal drinking water treatment plant waste residuals in the Northwest Territories.

REPRESENTATIVE PROJECTS AND ROLES

- Dartmouth Municipal Compost Facility Environmental Monitoring Program, Dartmouth, NS, 2021 Present Intermediate Engineer: Monitoring groundwater and surface water sampling, data compilation, data analysis, and regulatory reporting. Frank has prepared various approval amendment applications for submission to NSECC, direct correspondence with NSECC and streamlined the monitoring and reporting program.
- Wind Turbine Environmental Assessments, Multiple Locations, NS, 2021 Present Intermediate Engineer: Conducted watercourse, wetland, fish/fish habitat, wildlife and avian assessments required, and environmental assessment reporting. Developing greenhouse gas and climate change assessment criteria for quantifying effects or impacts from these and other Projects.
- Groundwater Geothermal Heating and Cooling System Review and Permitting, Wolfville, NS, 2021 Present Intermediate Engineer: Withdrawal flow monitoring, water level monitoring, equipment inspection, water quality sampling, data compilation, data analysis, and regulatory reporting.
- Municipal Compost Facility Leachate Handling System, Dartmouth, NS, 2021 Present Intermediate Engineer: Design, specification, and industrial approval amendment.

- Level I and II Groundwater Assessments, Multiple Locations, NS, 2021 Present Intermediate Engineer: Supervise well installation, pump testing (i.e., step and constant), sampling, analysis of aquifer characteristics, groundwater modelling, and regulatory reporting.
- Groundwater Geothermal Cooling Systems, Wolfville, NS, 2021 Present Intermediate Engineer: Withdrawal flow monitoring, water level monitoring, equipment inspection, water quality sampling, data compilation, data analysis, and regulatory reporting.
- **Production Field Centre Hazardous Materials Assessment, Sheet Harbour, NS, 2021 Junior Engineer:** Hazardous Materials inventory, coordinate sampling, data analysis, and reporting.
- Green House Gas Inventory Audit, Parrsboro, NS, 2021 Junior Engineer: Green House Gas auditing for Fisheries and Oceans Canada (DFO) application.
- Air Quality Improvement Design, Labrador, NL, 2021 Junior Engineer: Design, specification, stack testing, data analysis, and construction of ventilation improvements.
- Drinking and Wastewater Treatment Plant System Assessments, Baddeck, NS, 2021 Junior Engineer: Assess water and wastewater infrastructure, establish an asset inventory, and reporting.
- Municipal Groundwater Withdrawal Compliance, Pictou, NS, 2021 Junior Engineer: Review pumping rates and withdrawal volumes, spatial interferences, sustainability concerns, data analysis, and regulatory compliance.
- **Registered Potable Groundwater Supply Assessment, Cape Breton, NS, 2021 Junior Engineer:** Review design specifications, well logs, water quality, data compilation, data analysis, and regulatory compliance.

Matthew Savelle, BSc., Adv Dipl

Marine Surveyor and GIS Specialist Total Experience: 13 years

AREAS OF SPECIALIZATION

- Marine Hydrographic Surveys
- Bathymetric Surveys
- Single Beam Sonar Surveys
- Multibeam Sonar Surveys
- Marine Benthic and Water Sampling
- Underwater Video
- Geographic Information Systems (GIS)

COMPUTER EXPERIENCE

- Operating Systems: Windows, OSX, Linux
- Survey Software: HYPACK
- Seismic Software: SonarWiz, Coda
- GPS Software: Trimble Office, Waypoint GPS Processing, GravNav and GravNet
- GIS Software: ArcGIS, GRASS GIS
- CAD Software: AutoCAD Civil 3D
- Image Processing: Surfer, CARIS HIPS and SIPS
- Misc. Software: Grapher, Microsoft Office, Global Mapper, SonarPro

EQUIPMENT EXPERIENCE

- GPS Equipment: Assorted Trimble and equipment for autonomous, differential, static, and RTK surveying (Pro XR, 4600, 4800, 5700/5800), Leica RTK, differential static and total stations
- Surveying Equipment: Knudsen BP320 echosounder, SSS Klein 595 and 3000, Teledyne Reson T20P multibeam, Teledyne Reson 7125 multibeam, Odom MB1 and MB2, Integrated Marine Acoustic Profiling System, Magnetometer, and various GPR equipment.
- Misc. Equipment: RBR XR620 CTD Probe and Tide Gauge, Eckman and Van Veen Grab Samplers, Underwater Camera, CNAV 0183 NMEA GPS receivers

RELEVANT EXPERIENCE

Mr. Savelle is a Marine Surveyor and a GIS Specialist with Strum working in our Environmental Science Group. His area of speciality is in Marine Geomatics and conducting bathymetric and topographic surveys. He has extensive experience in surveying marine benthic surfaces and shorelines, obtaining overlapping hydrographic (multibeam, single beam and side scan sonar) data, data collection positioning and navigation, data processing and compilation, plotting and reporting of results. Matt also has experience collecting conventional total station data, RTK and static GPS data, and has been responsible for project set up, establishing GPS control points, and boat mobilization.

REPRESENTATIVE PROJECTS AND ROLES

EverWind Fuels Green Hydrogen Project, NS, 2022 - Present - Geomatics Specialist: Project work includes geospatial analysis, supporting external inquiries, and integrating environmental and socioeconomic factors into the assessments.

Wind Farm Projects, NS, 2022 - Present - Geomatics Specialist: Project work includes streamlining field data collection, developing in house habitat modelling, tracking applications, and performing geospatial data analysis.

Marine Survey for Offshore Oil & Gas Support Facilities, Sheet Harbour, NS, 2020 – Detailed marine surveys were conducted as part of the planning and permitting process for a marine facility used to support the offshore oil and

EDUCATION

- Centre of Geographic Sciences (COGS), Lawrencetown, Nova Scotia Advanced Diploma in Marine Geomatics (2010)
- Saint Mary's University, Halifax, Nova Scotia Bachelor of Science Degree (BSc) (2009), major in Biology and Minor in Geography

TRAINING

- Marine Basic First Aid
- St. John Ambulance, Level A CPR
- St. John Ambulance, Canadian East Coast Offshore Fitness Certificate
- Med A1 Offshore Survival Systems,
- WHMIS

gas industry. Bathymetric and multibeam sonar surveys were completed to provide a detailed bottom profile and water depths in areas of Sheet Harbour that will be used for large vessel movements. This information will be used to determine proper clearances for vessels and to determine if additional dredging is required. In addition to collecting this survey information, digital video was captured to document the types of marine habitat in the area to support applications for federal approvals.

Chedabucto Bay Marine Surveys for Aquaculture Facilities, NS, 2020 – As part of the detailed siting of marine aquaculture facilities, bathymetric and single beam sonar surveys were completed to provide a detailed bottom profileand water depths in multiple areas of St. Marys Bay. In addition to collecting this survey information, digital video was captured along predetermined transects to document marine habitats, and benthic sediment samples were collected with a Van Veen grab for analysis. Marine survey data was processed to generate detailed digital bottom profiles.

St. Marys Bay Marine Surveys for Aquaculture Facilities, NS, 2019-2020 – As part of the detailed siting of marine aquaculture facilities, bathymetric and single beam sonar surveys were completed to provide a detailed bottom profile and water depths in multiple areas of St. Marys Bay. In addition to collecting this survey information, digital video was captured along predetermined transects to document marine habitats, and benthic sediment samples were collected with a Van Veen grab for analysis. Marine survey data was processed to generate detailed digital bottom profiles.

AREAS OF SPECIALIZATION

- Remote Sensing
- Geographic Information Systems (GIS)
- LIDAR
- Photogrammetry
- Location, spatial, and data analytics
- Geoprocessing, Model Building, and automation
- Database management
- Geomorphology

COMPUTER EXPERIENCE

- Operating Systems: Windows, macOS
- GPS Software: Garmin BaseCamp, Trimble Geospatial
- GIS Software: ArcGIS Suite, QGIS, Global Mapper
- Remote Sensing Data Processing: Trimble Inpho, POSPac MMS, LAStools
- Other Software: CorelDRAW X7
- Scripting: Python 2 & 3, SQL

RELEVANT EXPERIENCE

Mr. Opra is a GIS Specialist with Strum working in our Environmental Science Group. Mr. Opra specializes in Geomatics analysis and automation. He has extensive experience in implementing workflows for data analysis and processing. This experience includes trajectory processing, processing single and dual channel LiDAR data, photogrammetry, and automation of geospatial data analysis with both vector and raster data. In addition, Mr. Opra is experienced in operating a RPAS for data collection.

During his graduate studies, Mr. Opra focused on the application of remote sensing technologies in exploration geology. He investigated LiDAR as an effective means to visualize topography and in further detail, geomorphological features such as folds and glacial structures. He explored the advantages of both RPAS and airplane-acquired LiDAR while reviewing various software for processing and analysis. Mr. Opra helped support the project's RPAS surveys in Trafalgar, Nova Scotia and processed the data to produce high resolution terrain models.

Prior to and following his research contribution, Mr. Opra worked in academia as an advisor, then in the industry as a Geospatial Data Analyst and as a Remote Sensing Analyst. In academia, he assisted with an Honours thesis in developing a geospatial model to automatically detect sinkholes based on LiDAR data. He also assisted in a Master's thesis by mapping legacy gold mine tailings, and developing a survey grid for sampling. As a geospatial data analyst, he helped create new data products using multispectral imagery for precision agriculture. Through working on various LiDAR and Photogrammetry projects based throughout the Caribbean, USA, and Canada, Mr. Opra was able to apply automation to photogrammetry procedures and LiDAR processing. His commitment to data quality assurance and control, allowed him to develop a deeper understanding of how data is affected by environmental and human factors. His experience in both geology and environmental science allows him to have a strategic approach for geospatial analysis in environmental consulting.

Due to the multidisciplinary nature of Geomatics, Mr. Opra developed the ability to anticipate, identify, and solve diverse geospatial problems. Mr. Opra continues to research advancements in technology to build on and develop efficient procedures for data analysis and collection.

EDUCATION

- Master of Science in Applied Geomatics, Acadia University, Wolfville, NS (2021)
- Advanced Diploma in Geographic Information Systems (GIS), Centre of Geographic Sciences (COGS), Lawrencetown, NS (2020)
- Bachelor of Science, Major in Geology Saint Mary's University, Halifax, NS (2019)

TRAINING

- Standard First Aid (2022)
- WHMIS (2022)
- RPAS Pilot Certification (2021)
- Over 200 hours ESRI Academy Training (2019 Present)

REPRESENTATIVE PROJECTS AND ROLES

EverWind Fuels Green Hydrogen Project, NS, 2022 - Present - Geomatics Specialist: Spearheaded geospatial analysis, supported external inquiries, and integrated environmental and socioeconomic factors in the assessments.

Wind Farm Projects, NS, 2022 - Present - Geomatics Specialist: Streamlining field data collection, developed in house habitat modelling, tracking applications, and performing geospatial data analysis.

Sinkhole Delineation Automation, NS, 2021 - 2022 - Advisor: Assisted in the development of a model within ArcGIS Pro for automating detection and delineation of sinkholes in the Karst prone areas.

LiDAR and Orthoimagery Data Production, Caribbean, USA, and Canada, 2021 - 2022 - Remote Sensing Analyst: Trajectory processing, LiDAR processing, automation, and creation of data products from inception to delivery.

Epiphytic Lichens as Spatial Biomonitors of Airbourne Mercury and Arsenic, 2019 - Research Intern: Used GPS to map historical mining sites and designed survey grids for Lichen collection.

Multispectral Vineyard Imagery Data Production, California, USA, 2020 - Geospatial Data Analyst: Assisted with the development of new proprietary geospatial products for precision agriculture.

Provenance and Diagenesis of Sandstones in the Deep Wells Annapolis G-24, Balvenie B-79, Crimson F-81, Weymouth A-45, and Newburn H-23, Scotian Basin, offshore NS, 2017 - 2018 - Research Assistant: Creation of graphic models and diagrams using data captured by a scanning electron microscope (SEM) to further research efforts in understanding the geology of the Scotian Basin.

Petrography of Bedrock and Ice-rafted Granules, Flemish Cap, Offshore Newfoundland and Labrador, 2017-2018, Research Assistant: Determining petrographic information of the samples using a scanning electron microscope (SEM). Energy dispersive spectroscopy (EDS) was used to determine mineral composition and backscattered electron images (BSE) were used to identify textures. Graphic design software was used to aggregate the images captured from the SEM.

Eric Johnson, BSc., Adv Dipl

Environmental Technician & GIS Technician Total Experience: 2 years

AREAS OF SPECIALIZATION

- Geographic Information Systems (GIS)
- Field Studies
- Avian Radar Analysis
- Wind Turbine Risk Assessment (Shadow Flicker, Noise Modelling & Visual Simulations)

RELEVANT EXPERIENCE

Mr. Johnson first joined Strum in 2021 as an Environmental Field Technician working in our Environmental Science Group. His area of speciality is in Geographic Information Systems and Remote Sensing. He has extensive

EDUCATION

- Centre of Geographic Sciences (COGS), Lawrencetown, Nova Scotia Advanced Diploma in Geographic Information Systems (2020)
- Saint Mary's University, Halifax, Nova Scotia Bachelor of Science Degree (BSc) (2017), major in Geography

TRAINING

- Canadian Drone Pilot Certificate (Basic)
- WHMIS
- ATV Training Course

experience in data collection in the field, installation of monitoring equipment such as groundwater wells, bird and bat monitoring systems, and working with avian radar datasets and wind turbine analysis software. He is responsible for producing concise and accurate mapping products and incorporating them into the environmental assessment.

More recently, Mr. Johnson has been responsible for the predictive modelling of multiple wind farm projects around the province. This includes the shadow flicker and noise assessment impact on receptors in nearby communities, and photo-simulations visualizing turbines in each study area.

REPRESENTATIVE PROJECTS AND ROLES

Higgins Mountain Wind Farm, NS, 2021-2022 – Junior Environmental Technician/GIS Technician: Environmental constraints were calculated and visualized using GIS software, producing mapping products to be used in the official environmental assessment. Avian radar systems were installed and used in various locations of the study area for the purpose of tracking bird activity. Detailed wind turbine risk assessment was conducted for the study area, including noise level and shadow flicker assessments, and photo-simulations visualizing turbines in each potential location.

Pirate Harbour Wind Farm Project, NS) 2021-Present – Junior Environmental Technician / GIS Technician: Responsible for the collection of field data, analysis, and production of accurate GIS mapping products to be used in the reporting process. Avian radar systems were installed and used in various locations of the study area for the purpose of tracking bird activity Detailed wind turbine risk assessment was conducted for the study area, including noise level and shadow flicker assessments, and photo-simulations visualizing turbines in each potential location.

Ellershouse Wind Farm, NS, 2022-Present – Junior Environmental Technician/GIS Technician: Responsible for the collection of field data, analysis, and production of accurate GIS mapping products to be used in the reporting process. Detailed wind turbine risk assessment was conducted for the study area, including noise level and shadow flicker assessments, and photo-simulations visualizing turbines in each potential location.

Weavers Mountain Wind Farm, NS, 2022 – Present - Junior Environmental Technician / GIS Technician:

Responsible for the collection of field data, analysis, and production of accurate GIS mapping products to be used in the reporting process. Detailed wind turbine risk assessment was conducted for the study area, including noise level and shadow flicker assessments, and photo-simulations visualizing turbines in each potential location.

Mersey Wind Farm, NS, 2021 – Present - Junior Environmental Technician / GIS Technician: Responsible for the collection of field data, analysis, and production of accurate GIS mapping products to be used in the reporting process. Avian radar systems were installed and used in various locations of the study area for the purpose of tracking bird activity. Detailed wind turbine risk assessment was conducted for the study area, including noise level and shadow flicker assessments, and photo-simulations visualizing turbines in each potential location.

L8005 Transmission Line Moose Tracking Surveys, NS, 2022 – Junior Environmental Technician/GIS

Technician: Participated in field assessments for winter wildlife, with a focus on mainland moose and other species at risk. This involved walking predetermined transects through various habitats to identify and document evidence of wildlife such as tracks, scat, and browsing. Additionally, responsible for the post-processing of field data and production of accurate GIS mapping products to be used in the reporting process.

Various Wetland and Watercourse Delineation Projects, NS, 2021 – Present - Junior Environmental

Technician/GIS Technician: Responsible for the post-processing of field data and production of accurate GIS mapping products to be used in the reporting process.

AREAS OF SPECIALIZATION

- Avifauna Surveys
- Wetland Delineation
- Plant Identification
- Rare Lichen Assessment

RELEVANT EXPERIENCE

Mr. Pepper has been an active member of the Nova Scotia birding community for the past 14 years, and

TRAINING

- Wetland Plant Adaption and Identification and Wetland Delineation (2012)
- First Aid (2015)

MEMBERSHIPS AND ROLES

- Provincial Coordinator for the Nova Scotia Bird Migration Count
- Director for the Nova Scotia Birds Society

has participated in such projects as the Maritime Breeding Bird Atlas, the Maritime Nocturnal Owl Survey and the Christmas Bird Count. Chris served as the Field Trip Coordinator for the Nova Scotia Bird Society from 2010-12 and currently sits on the Executive Committee as a Director. Other current roles include acting as the Provincial Coordinator for the Nova Scotia Spring Migration Count.

Mr. Pepper has completed over 4000 hours of avian assessment surveys in Nova Scotia, Newfoundland, and Alberta, working for various companies including Strum Consulting, McCallum Environmental, WSP ltd, CBCL Ltd., Nature Conservancy of Canada, and Canadian Wildlife Service.

Chris completed multiple avifauna surveys on a series of offshore coastal islands. The study was completed to ascertain the use of the islands by shorebirds during the breeding season, and to identify relationships between habitat and species utilization for nesting and feeding. The importance of the habitat for bird migration periods was also evaluated.

Chris has also been heavily involved in the implementation of comprehensive avifauna surveys in support of multiple wind energy developments in Nova Scotia.

In 2014 Chris completed an extensive bird interaction study at the site of a coastal vehicular causeway crossing in eastern Nova Scotia. The study was conducted to gauge bird behavioural responses to, and interaction with, electrical power line infrastructure. Situated in a marine environment, the study consisted of marine and shorebird species identification, and relationship to migratory pathways, impacts to coastal colony nesting, and access to feeding areas.

In addition to Chris's Avian Assessment experience, he has completed over 3000 hours of Boreal Felt Lichen surveys for various organizations including Stantec, McCallum Environmental, Consulting, Mersey Tobeatic Research Institute, Northern Pulp, Port Hawkesbury Paper, Nature Conservancy of Canada, Nova Scotia Nature Trust, and others.

Chris is also an experienced Wetland Delineator, completing wetland surveys for various companies including McCallum Environmental, Strum Consulting and others.

REPRESENTATIVE PROJECTS AND ROLES

Nova Scotia Wind Farm Developments, NS, Ongoing – Expert Birder: Responsible for completing seasonal avifauna surveys as part of Environmental Assessments in support of multiple proposed wind power projects.

Offshore Island Bird Surveys, NS, Ongoing – Expert Birder: Responsible for completing avifauna surveys on a series of offshore islands along the Eastern Shore of Nova Scotia.

Canso Causeway Bird Study, NS, 2014 – Expert Birder: Completion of avian abundance and species composition surveys at a marine causeway, and evaluation of potential migration pattern disturbance as a result of power line infrastructure.

Canada Warbler Study, NS, Ongoing – Expert Birder: Completion of surveys to evaluate the potential shift in presence/absence and behavioural changes of Canada Warbler, as a result of local wind farm development.

Abraham's Lake Bird Surveys, NS, 2011 – Expert Birder: Responsible for completing avifauna surveys in support of the acquisition of a parcel of land on behalf of the Nature Conservancy of Canada.

Port Hawkesbury Paper Woodlands Staff

Daniel MacKinnon

Current Job Title: Woodlands Operations Supervisor (November 2021 to present)

Previous Job Title: Silviculture Assessor and Assistant Operations Supervisor (2018 to 2021)

Educational Experience

Forest Technologist Diploma - Maritime College of Forest Technology (2016-2018)

Technical Training & Skills

WHMIS Wilderness First Aid – CPR Level A Firearm Safety Silviculture assessments NRR Old Growth surveying (2019; update training 2022) Forestry computer applications Data collection and analysis Plot sampling and cruising

Megan MacInnis

Current Job Title: Woodlands Operations Supervisor (October 2021 – present)

Previous Job Title: Assistant Operations Supervisor/Old Growth Analyst (April 2019 to October 2021)

Educational Experience

Natural Resources & Environmental Technology Diploma – Nova Scotia Community College (2014 to 2016)

Technical Training & Skills

WHMIS Wilderness First Aid – CPR Level A Chainsaw Safety Forest Fire Suppression Forest Ecosystem Classification (FEC) Pre-treatment Assessments (PTA) NRR Old Growth surveying and aging (2019; update training 2022) Data collection and analysis Plot sampling and cruising Silviculture assessments Forestry computer applications (GIS/LRM) Nova Forest Alliance Best Management Practices Remote location plans

Port Hawkesbury Paper Woodlands Staff

James Duggan

Current Job Title: GIS Analyst (June 2022 to present)

Previous Job Experience:

Forestry Practitioner – Scott & Stewart Forestry Consultants (2019 to 2021) GIS Consultant – Freelance and Exxon Mobil Research, State of Qatar (2010 to 2019) GIS Supervisor – NewPage Port Hawkesbury (2007 to 2008) Remote Sensing Specialist - Intermap Technologies Corp, Ontario (2006) Physical Science Analyst – Agriculture Canada, Ontario (2006) Research Associate – Noetix Research Inc., Ontario (2005) Jr. Physical Scientist – Canada Centre for Mapping & Earth Observation, Ontario (2005)

Educational Experience

BSc. Forestry Management and Environmental Studies – University of New Brunswick (1997 to 2000) International Development Certificate – Coady International Institute, St. F.X. (2001) Geographic Information Systems Diploma – Centre of Geographic Sciences (2003) MSc. Geographical Information Systems, Kasrst Prediction – University of Leeds (2014)

Technical Training & Skills Geographical Information Systems Remote sensing and digital image processing Data management and processing Geodatabase creation GeoDesign Terrain analysis mapping Resources management principles, practices and concepts SPASS Statistical application Basic Life Support First Aid & Wilderness First Aid Introduction & Advances Access Programming