Special Thanks

Thanks to:
- Dr. Terry Chisholm
- Dr. Margaret Hahn
- Slides taken from their prior presentations were used in preparing the majority of this presentation
Objectives

- Review changes in drug metabolism with aging
- Review changes in drug effects with aging
- Review adverse drug effects in the elderly
- Review inappropriate prescribing practices in the elderly
- Review a responsible general approach to prescribing in the elderly
- Be aware of drug interactions in the elderly
- Review side effect profiles of psychotropic medications including:
 - Antipsychotics
 - Antidepressants
 - Lithium
 - Benzodiazepines
Pharmacokinetics

DEFINITION – “Factors determining availability of a drug to its bioactive sites”
Pharmacokinetics

“All stages of the journey of a drug through the human body may be affected by aging”

- Processes that are affected by aging include:
 - Absorption
 - Distribution (body composition, protein binding)
 - Metabolism (hepatic)
 - Elimination (renal)
Pharmacokinetics: Absorption

- Age related changes affecting absorption:
 - Decreased gastric acid secretion
 - Decreased surface of intestinal epithelium
 - Decreased absorptive surface area
 - Decreased carrier-mediated transport mechanisms
 - Decreased intestinal motility
 - Increased transit time
 - Decreased mesenteric blood flow
 - Reduced tissue blood perfusion
 - Dermal, subcutaneous, and muscular tissue
Pharmacokinetics: Absorption

- **Effects:**
 - In spite of the changes, intestinal absorption of most drugs is NOT significantly affected
 - Decreased rate of absorption of carrier-mediated drugs
 - Calcium, iron, vitamins
 - Decreased transdermal, subcutaneous, and intramuscular absorption

- **Clinical implications:**
 - Onset of action delayed with certain drugs
 - Clinical effect reduced
Pharmacokinetics: Distribution

- Age related changes affecting distribution:
 - Decreased muscle mass
 - Increased total body fat
 - 18 to 36% in men
 - 33 to 45% in women
 - Decreased total body water
 - Falls by 10-15% until age 80
 - Blood-brain barrier (BBB)
 - Decreased integrity with age
 - Decreased albumin, increased α_1 acid glycoprotein
Pharmacokinetics: Distribution

- Effects:
 - Increased volume of distribution of lipophilic drugs
 - Greater half-life
 - Longer interval to reach steady-state levels
 - Longer to evaluate drug effect
 - E.g. diazepam, verapamil
 - Decreased volume of distribution of hydrophilic meds
 - Shorter half-life
 - Higher plasma concentrations with “normal” doses
 - E.g. lithium, aspirin
Pharmacokinetics: Distribution

- **Effects (cont):**
 - **Blood-brain barrier**
 - Protein bound, charged, hydrophilic drugs or active metabolites cross easier
 - Increased sensitivity to psychotropic meds
 - **Decreased albumin levels**
 - Unbound drug fraction is pharmacologically active
 - Decreased binding could increase plasma concentrations of free drugs → **TOXICITY**
 - Competition for protein binding by co-administered drugs → **INCREASE IN PLASMA CONCENTRATION**
Pharmacokinetics: Distribution

- Clinical implications:
 - Greatest effects in malnourished pts or those with comorbid medical conditions
 - Need to watch for adverse effects when new medications are added
Pharmacokinetics: Metabolism

- **Hepatic biotransformation**:
 - Intestinal absorption → portal vein → systemic circulation
 - **Phase I, or oxidative reactions**
 - Catalyzed by CYP450 enzyme system
 - Subfamilies CYP1A2, 2D6, 3A3/4 account for metabolism of most psychotropic medications, often to active metabolites through demethylation
 - Yields progressively more water soluble compounds for excretion via the gut and kidneys
 - **Metabolic activity can decrease up to 20-40% with age**
 - **Phase II, or conjugation reactions**
 - Produces polar, hydrophilic compounds devoid of pharmacologic activity
 - **Usually unchanged with age**
Pharmacokinetics: Metabolism

- Age related changes in hepatic clearance:
 - Decreased liver volume
 - 25-35% decrease
 - Decreased hepatic blood flow
 - Up to 40% decrease
 - Decreased oxidative metabolism
 - Decreased N-demethylation
 - Little effect on conjugation
Pharmacokinetics: Metabolism

Effects:
- Increased plasma levels
- Variable ratios of parent drug to demethylated drug (active)

Clinical implications:
- Reduce dosages
 - Especially upon initiation to avoid excessive plasma levels
- Caution when adding new medications
 - Drug interactions may occur if a new medication inhibits the CYP450 enzymes
- CHF may further decrease hepatic metabolism by compromising blood flow to liver
Pharmacokinetics: Elimination

- **Age related changes:**
 - Decreased renal blood flow
 - 1% decrease/year after age 40
 - Decreased GFR (glomerular filtration rate)
 - Declines by 25-50% between ages 20 and 90

- **Pharmacokinetic effects:**
 - Longer half-life
 - Greater steady-state plasma concentration
Pharmacokinetics: Elimination

Clinical implications:

- Renal function should be evaluated prior to initiation of treatment
 - Plasma creatinine overestimates GFR due to reduction in muscle mass
 - Can use Cockcroft-Gault formula to estimate creatinine clearance (CrCl)
 - CrCl is a good estimate of renal function
- Elevated/potentially toxic steady-state levels of lithium and other drugs excreted by the kidneys may occur
 - Often need to adjust doses as compared to younger counterparts
DEFINITION – “Factors influencing sensitivity to the drug at its receptor”

Factors include:
- Number of receptors in target organ
- Ability of cells to respond to receptor occupation
- Preservation of homeostatic mechanisms
 - Preserve the original functional equilibrium
Pharmacodynamics: Sensitivity

- Age dependant change in tissue sensitivity to drug action:
 - E.g. Increased sensitivity to muscarinic antagonism
 - Results from decreased number of cholinergic neurons
 - Peripheral effects: Constipation, glaucoma, urinary retention, blurred vision, tachycardia
 - Central effects: Mild depression, mild impairment of recent memory, confusion, delirium
Pharmacodynamics: Sensitivity

- E.g. Increased sensitivity to dopaminergic blockade
 - Results from decreased number of dopaminergic neurons
 - Results in increased incidence of motor effects
 - Antipsychotic-induced extra-pyramidal side effects (EPSE)
 - SSRI-induced EPSE
Pharmacodynamics: Sensitivity

- E.g. Increased susceptibility to syndrome of inappropriate anti-diuretic hormone (SIADH)
 - 12% will experience some degree of hyponatremia (low sodium) with SSRI or SNRI use
 - Median time to onset is 13 days
 - Lethargy, weakness, muscle cramps, disorientation, delirium
Pharmacodynamics: Sensitivity

- E.g. Increased risk of GI bleeding
 - Direct effect of SSRI on platelets
 - Recent comprehensive literature review (Yuan et al. 2006):
 - Supports the link between SSRIs and upper GI bleeds (UGIB) at a population level
 - The risk of UGIB increases with concomitant use of SSRIs and NSAIDs and/or aspirin, and advanced age
 - Preventive measures
 - Monitor bleeding parameters in high risk individuals (especially if on anticoagulants)
 - Switch from NSAID to selective COX-2 inhibitor
 - Addition of PPI may be helpful
 - Consider using non-SSRI in pts with bleeding risk
Pharmacodynamics: Sensitivity

- E.g. Increased sensitivity to α_1-adrenergic blockade
 - Results from:
 - Reduced central noradrenergic (NA) tone
 - Decreased response to inotropi effects of adrenergic stimulation
 - Results in orthostatic hypotension
 - 5-33% have drug-induced orthostatic reactions
 - Increase in falls and hip fractures
 - 20% one year mortality post-hip fracture
Homeostatic Mechanisms

- With increased age:
 - Impaired orthostatic circulatory responses
 - Impaired thermoregulation
 - Impaired thirst response
 - Impaired glucose tolerance
 - Impaired vascular stability
 - Impaired cognitive reserve
AS DRUG SENSITIVITY INCREASES AND HOMEOSTATIC MECHANISMS DECLINE, WE CAN CONCLUDE THE ELDERLY ARE MORE SUSCEPTIBLE TO SIDE EFFECTS!
Delicate Balance of Prescribing

<table>
<thead>
<tr>
<th>BENEFITS</th>
<th>MORBIDITY & MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elderly patients benefit from drugs</td>
<td>Risk of adverse reaction rises exponentially with # meds</td>
</tr>
<tr>
<td>Puts focus on “appropriate” drugs</td>
<td>Many inappropriate drugs are use</td>
</tr>
</tbody>
</table>
Compliance

<table>
<thead>
<tr>
<th># MEDS</th>
<th>COMPLIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>73%</td>
</tr>
<tr>
<td>>5</td>
<td>37%</td>
</tr>
</tbody>
</table>

most common reason: fear of side effects
Adverse Drug Reactions

- 8-21% of elderly in the community
- 56-74% nursing home residents
- Often missed:
 - Falls - benzodiazepines, psychotropics
 - Constipation - anticholinergics
 - Dementia - benzodiazepines
Adverse Drug Reactions

- Morbidity and mortality:
 - Hospitalization - 8% of admissions
 - 16% of admissions from nursing homes
 - Leads to increased length of stay
 - Between 4th - 6th leading cause of death in the US
 - Cost to society is more than for diabetes
Prescribing Cascade

- A prescribing cascade occurs when a 2nd medication is used to treat side effects of the 1st medication
 - E.g. Metoclopramide (Reglan) → EPSE
 - Levodopa (Sinemet) then used to treat EPSE
 - E.g. NSAID → HTN
 - HTN then treated with antihypertensive
Inappropriate Medication Use

- Examples of inappropriate med use:
 - Polypharmacy
 - Correlates with adverse drug reactions, noncompliance
 - Use of contraindicated meds
 - Beers Criteria
 - Excessive dosing
 - High risk of interactions
 - Safer choice available
Inappropriate med use is common in the following situations:

- Anxiety (often presenting symptom of depression)
 - 78% get anxiolytic
 - 32% get antidepressant
- Drug side effects misdiagnosed as new disease
- Multiple specialists
 - May be prescribing similar drugs
 - GP’s reluctant to discontinue meds started by specialist
General Approach to Pharmacotherapy

- Identify target symptoms
- Initiate appropriate treatment
- Try non-pharmacologic methods first
- Consider patient: medical conditions, diet, environment, drug interactions
- Start low, go slow
- Initiate at half the normal adult dose
General Approach to Pharmacotherapy

- Simplify the regimen
- Evaluate for response frequently
- Make dose changes only after steady-state achieved
- Increase dose until benefit or toxicity
- Reevaluate and taper as necessary
- Avoid undertreatment
Avoid Certain Medications

Benzodiazepines
- Cognitive impairment, falls, hip fractures, MVAs, addiction
- short-acting benzodiazepines safer (controversial)
- Used by 30% of elderly Nova Scotia women

NSAIDS
- GI bleeds, HTN, CHF, renal failure
- Acetaminophen should be first line for osteoarthritis (OA)
Avoid Certain Medications

Meperidine (Demerol)
- Higher incidence of central nervous system (CNS) effects than other opioids
- Interaction with monoamine oxidase inhibitors (MAOIs)

Amitriptyline (Elavil)
- Strongly anticholinergic
- Postural hyptotenison and falls
- Other tricyclic antidepressants (TCAs) can be use to treat neuropathic pain
Avoid Certain Medications

- Fluoxetine (Prozac)
 - long half-life
- Benztropine (Cogentin)
 - anticholinergic
- Metoclopramide (Maxeran)
 - EPSE
- Dimenhydrinate (Gravol), diphenhydramine (Benadryl), hydroxyzine (Atarax)
 - anticholinergic
Use Appropriate Doses

<table>
<thead>
<tr>
<th>Medication</th>
<th>Too high</th>
<th>Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCTZ</td>
<td>>25 mg</td>
<td>↓Na,↓K,↑glucose</td>
</tr>
<tr>
<td>Iron</td>
<td>>325 mg</td>
<td>Abdominal pain, constipation</td>
</tr>
<tr>
<td>Digoxin</td>
<td>>0.125 mg</td>
<td>Delirium, nausea, arrhythmia</td>
</tr>
<tr>
<td>Haldol</td>
<td>>2 mg</td>
<td>EPSE</td>
</tr>
<tr>
<td>Lithium</td>
<td>Level >0.4-0.8</td>
<td>Toxicity</td>
</tr>
</tbody>
</table>
Antipsychotics: EPSE

Parkinsonism: shuffling gait (sticky feet), rigidity, tremor, drool, *common in seniors*

Dystonia: abnormal postures produced by sustained, contorting, twisting muscle spasms most often involving the head and neck, *uncommon in seniors*

Akathisia: subjective sense of restlessness, e.g., shifting from foot to foot, inability to sit still (often misinterpreted as agitation)

Tardive Dyskinesia

- Abnormal writhing involuntary movements
 - Orofacial: tongue, mouth, face
 - Most common site
 - Impaired eating and swallowing, dental problems, speech problems
 - Limbtruncal:
 - Gait disturbances may lead to falls, injuries
- Stigma
- May last years after stopping medication
- 5.6X more prevalent in elderly
Incidence of Tardive Dyskinesia in Older and Younger Patients

<table>
<thead>
<tr>
<th>Cumulative Years of Treatment</th>
<th>% Patients with TD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>26%</td>
</tr>
<tr>
<td>3</td>
<td>52%</td>
</tr>
<tr>
<td>4</td>
<td>60%</td>
</tr>
<tr>
<td>5</td>
<td>19%</td>
</tr>
<tr>
<td>6</td>
<td>26%</td>
</tr>
</tbody>
</table>

Mean Age: 65.5
n = 266

Mean Age: 29
n = 850

Jeste et al. Arch Gen Psychiatry 1995;52:756-765
TD – Atypical Antipsychotics

- Lower incidence of TD than with typical antipsychotics
 - Best established with clozapine
 - Risperidone - compared to haldol after 9 months of treatment
 - Risperidone - 5% TD
 - Haldol - 30% TD
- ? Due to serotonin antagonism
TD – Risk Factors

- Length of drug exposure
 - > 90 days
 - Cumulative amount of antipsychotic (especially high-potency typicals)
- *Increased age
- EtOH abuse/dependence
- Subtle movement disorder at baseline, early EPSE
- Dementia

Jeste, 2001
TD – Prevention

- Avoid typicals, especially in high risk patients
- Use lowest effective doses
- Examine patients at baseline and at regular intervals thereafter
- Reduce and discontinue ASAP after TD detection
 - TD will likely worsen after discontinue of an antipsychotic
- Switch to an atypical (cross over)
Antipsychotic Side Effects

- **Conventional**
 - EPSE (falls) / TD
 - sedation*
 - postural hypotension*
 - anticholinergic*
 - ↓ cognition
 - ↑Prl, osteoporosis
 - cardiac (QTc)

- **Novel**
 - minimal EPSE
 - minimal or no TD
 - ? improve cognition
 - weight gain
 - sedation

*low potency

Elderly are more vulnerable to SEs
Anticholinergic Side Effects

- Confusion
 - Incontinence meds or increased anticholinergic load associated with worse cognition
- Tachycardia
- Dry mouth
- Constipation
- Urinary hesitancy / retention
- Blurred vision
- Exacerbation of narrow-angle glaucoma
Common Medical Drugs with Anticholinergic Effects

- Furosemide
- Digoxin
- Theophylline
- Warfarin
- Prednisone
- Triamterene and hydrochlorothiazide
- Nifedipine
- Isosorbide
- Codeine
- Cimetidine
- Captopril
- Ranitidine
- Ditropan

Psychotropic Medications With Anticholinergic Properties

- Thioridazine
- Mesoridazine
- Chlorpromazine
- Perphenazine
- Loxapine
- Cogentin
- Trifluoperazine
- Thiothixene
- Clozapine
- Olanzapine
- Tricyclic antidepressants
SSRIs – Selected Effects

- Hyponatremia
- CP450 interactions
 - Fluoxetine inhibits 3A3/4 (alprazolam), 2D6
 - Fluvoxamine inhibits 3A3/4, 1A2 (warfarin)
 - Citalopram has no reported interactions
- Bleeding (GI, bruising, epistaxis)
 - Low absolute risk but be cautious if there are other risk factors (eg warfarin use)
 - Consider stopping if bleeding occurs
TCAs - Selected Effects

- Sedation
- Orthostatic hypotension
 - Drop of systolic pressure greater than 10mm associated with dizziness
 - Risk of falls/fractures
- Anticholinergic
 - Amitriptyline and imipramine are the worst
 - Desipramine has the least effect
Lithium – Drug Interactions

<table>
<thead>
<tr>
<th>DRUG</th>
<th>[Li]</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretic:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiazide (HCT)*</td>
<td>↑</td>
<td>-thiazides act in distal tubule</td>
</tr>
<tr>
<td>Loop (lasix)</td>
<td>↑↑</td>
<td>-loop - may not be significant</td>
</tr>
<tr>
<td>ACE-inhibitors</td>
<td>↑</td>
<td>-unknown mechanism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1-2 months after started</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>↑</td>
<td>-especially indomethacin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-unpredictable effect</td>
</tr>
</tbody>
</table>

Pharmacokinetic interaction - interferes with clearance
Lithium – SEs and Toxicity

<table>
<thead>
<tr>
<th>System</th>
<th>Side effects</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Neuro</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Renal</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>CV</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>Endocrine</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

* Only if severe toxicity
Lithium Toxicity

Acute
- overdose
- other cause

- early vomiting
- profuse diarrhea

Chronic
- dehydration
- drug interaction
- infection

- progress more slowly
 +/− GI
 gradual progression
 of neuro s/s
Lithium Toxicity

Death due to complications of prolonged coma, resp failure
Lithium Levels

<table>
<thead>
<tr>
<th>Group</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>QEII Lab</td>
<td>0.6-1.2</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
</tr>
<tr>
<td>Mania</td>
<td>0.8-1.1</td>
</tr>
<tr>
<td>Maintenance</td>
<td>0.8-1.1</td>
</tr>
<tr>
<td>Elderly</td>
<td>0.5-0.8</td>
</tr>
</tbody>
</table>

Level depends on side effects
Lithium Toxicity

- Lithium toxicity can lead to irreversible effects
 - Most patients completely resolve
 - Effects can last for months
 - Permanent if > 6 months
 - Cerebellar most common
 - Cognition
 - ↓STM, ↓comprehension, dementia
 - Choreoathetosis
 - EPSE
 - History of antipsychotic use
Lithium Toxicity –
Irreversible Cerebellar Effects

COMMON
- Dysarthria (common, most likely to improve)
- Truncal ataxia
- Gait ataxia
- Incoordination of limb movements

UNCOMMON
- Tremor in head, hands (intention tremor)
- Nystagmus
Benzodiazepines – Risks of Use

- BMJ Nov 05 (Glass et al)
 - They help with sleep, but compared to placebo:
 - 4.8X more adverse cognitive effects
 - 2.6X adverse psychomotor events (falls, dizziness, loss of balance)
 - 3.8X daytime fatigue

- Arch Int Med 2004;164:1567
 - Risk of hip # highest in first two weeks of use
 - 54% increase risk
 - Short half-life probably not safer
Benzodiazepines

- Do not use long-term (> 6 months)
- Recommended in seniors:
 - lorazepam, oxazepam, temazepam, clonazepam
 - Do not rely on liver metabolism
- Taper slowly
 - Over weeks to months
- If abrupt discontinuation:
 - Withdrawal
 - Tremor, tachycardia, delirium, seizures
 - Rebound anxiety
Stopping Benzodiazepines

- Consolidate to one benzodiazepine
 - Consider equivalent dose of clonazepam
- Can take months/years (outpatient)
- Patient involvement in drafting schedule
- Maintain same number of doses for as long as possible
- Can cut by larger amounts in the beginning
 - Up to one half of the dose depending on duration of benzo use
- Cut by smaller amounts later in taper
- Be prepared to hold taper during stress
References